触觉传感器
传感器阵列
摩擦电效应
电子皮肤
压力传感器
材料科学
机器人学
人工智能
声学
计算机视觉
感觉系统
计算机科学
压电传感器
压电
触觉知觉
感知
图像传感器
智能传感器
接触面积
图像分辨率
触觉显示器
高分辨率
触觉刺激
分辨率(逻辑)
机器人
接触力
灵敏度(控制系统)
接口(物质)
感觉
声压
触觉辨别
电极阵列
作者
Shaoshuai He,Y. Zhou,Shengshu Sun,Zhenghao Long,Fengyi Chen,Jinhong Dai,Xia Xin,Dong Wan,Zhiyong Fan,Yunlong Zi
标识
DOI:10.1002/adma.202519734
摘要
ABSTRACT Multimodal sensory integration advances the development of embodied intelligent systems and robotics with human‐skin‐like tactile perception. However, the difficulties in simultaneously achieving high resolution and multimodality hamper the exquisite tactile perception to differentiate information through touching. In this study, we report a sub‐milliscale‐resolution bimodal tactile sensor array consisting of a piezoelectric sensor array for mapping pressure magnitude distribution and a triboelectric sensor array for contact height detection, enabling the calculation of Young's modulus distribution. As compared to existing studies, the bimodal tactile sensor array achieved sub‐milliscale spatial resolution of 700 µm and relatively high sensor density of 226 pixels/cm 2 , demonstrating fine‐grained multimodal perception. By combining the pressure mapping information from the piezoelectric sensor array and contact height information from the triboelectric sensor array, with a rapid response time of 50 ms, the Young's modulus distribution can be revealed. Furthermore, the tactile sensor array can achieve human‐skin‐like graphesthesia sensation and reconstruct the softness‐encrypted pattern with the assistance of deep learning algorithms, providing a paradigm‐shift strategy of sub‐milliscale‐resolution tactile perception toward embodied intelligence and robotics.
科研通智能强力驱动
Strongly Powered by AbleSci AI