亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Privacy-Preserving Naive Bayes Classification in Semi-Fully Distributed Data Model

计算机科学 朴素贝叶斯分类器 人工智能 机器学习 贝叶斯定理 贝叶斯分类器 数据挖掘 分类器(UML) Bayes错误率 模式识别(心理学) 贝叶斯概率 特征选择
作者
Duy-Hien Vu
出处
期刊:Computers & Security [Elsevier BV]
卷期号:: 102630-102630
标识
DOI:10.1016/j.cose.2022.102630
摘要

• Privacy-preservation issue for a novel collaborative data model called the semi-fully distributed setting is investigated. • A privacy-preserving Naive Bayes classification solution based on secure multi-party computation is proposed for the semi-fully distributed scenario. • The proposed Naive Bayes classifier has the capability to guarantee the accuracy property of classification model, as well as to protect honest parties’ privacy against corrupted participants. • The proposed Naive Bayes classification method for the semifully distributed setting is efficient in real-life applications. In recent years, issues of privacy preservation in data mining and machine learning have received more and more attention from the research community. Privacy-preserving data mining and machine learning solutions enable data holders to jointly discover knowledge and valuable information, as well as construct machine learning models without privacy concerns. In this paper, we address the distressing problem of privacy-preservation for a novel data model called the semi-fully distributed setting. Differently from the existing scenarios, each record of the dataset in this data model is composed of three parts, in which the first part is privately kept by a data user, the second one is securely stored by the miner, and the rest is publicly known by both the miner and the data user. For this new data model, we propose a privacy-preserving Naive Bayes classification solution based on secure multi-party computation. Our proposed solution not only achieves a high level of privacy but also guarantees the accuracy of the classification model. The experimental results show that the new proposal is efficient in real-life applications. Furthermore, our pioneering study paves the way for new researches into privacy preservation issues for the semi-fully distributed data model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助azuzuzu采纳,获得10
2秒前
hpv587完成签到,获得积分20
7秒前
7秒前
小蘑菇应助研友_Lw43on采纳,获得10
7秒前
小凉完成签到 ,获得积分10
20秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
852应助科研通管家采纳,获得10
48秒前
1分钟前
1分钟前
从容的盼晴完成签到,获得积分10
1分钟前
1分钟前
1分钟前
WWW完成签到 ,获得积分10
1分钟前
汉堡包应助lizhuoran采纳,获得10
1分钟前
2分钟前
lizhuoran发布了新的文献求助10
2分钟前
2分钟前
完美芒果完成签到,获得积分10
2分钟前
穆振家完成签到,获得积分10
2分钟前
2分钟前
科研通AI5应助天真的雁露采纳,获得30
2分钟前
2分钟前
小二郎应助科研通管家采纳,获得30
2分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
完美芒果发布了新的文献求助10
2分钟前
3分钟前
祎薇发布了新的文献求助10
3分钟前
小二郎应助lizhuoran采纳,获得10
3分钟前
彭于晏应助彭佳丽采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
linyuling发布了新的文献求助10
3分钟前
3分钟前
彭佳丽发布了新的文献求助10
3分钟前
lizhuoran发布了新的文献求助10
3分钟前
linyuling完成签到,获得积分10
3分钟前
3分钟前
3分钟前
研友_VZG7GZ应助lizhuoran采纳,获得10
4分钟前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811682
求助须知:如何正确求助?哪些是违规求助? 3355965
关于积分的说明 10378743
捐赠科研通 3072923
什么是DOI,文献DOI怎么找? 1687775
邀请新用户注册赠送积分活动 811806
科研通“疑难数据库(出版商)”最低求助积分说明 766863