Learning Enriched Features for Fast Image Restoration and Enhancement

去模糊 计算机科学 人工智能 卷积神经网络 块(置换群论) 图像复原 水准点(测量) 图像分辨率 计算机视觉 特征(语言学) 图像(数学) 模式识别(心理学) 图像处理 语言学 哲学 几何学 数学 大地测量学 地理
作者
Syed Waqas Zamir,Aditya Arora,Salman Khan,Munawar Hayat,Fahad Shahbaz Khan,Ming–Hsuan Yang,Ling Shao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (2): 1934-1948 被引量:252
标识
DOI:10.1109/tpami.2022.3167175
摘要

Given a degraded input image, image restoration aims to recover the missing high-quality image content. Numerous applications demand effective image restoration, e.g., computational photography, surveillance, autonomous vehicles, and remote sensing. Significant advances in image restoration have been made in recent years, dominated by convolutional neural networks (CNNs). The widely-used CNN-based methods typically operate either on full-resolution or on progressively low-resolution representations. In the former case, spatial details are preserved but the contextual information cannot be precisely encoded. In the latter case, generated outputs are semantically reliable but spatially less accurate. This paper presents a new architecture with a holistic goal of maintaining spatially-precise high-resolution representations through the entire network, and receiving complementary contextual information from the low-resolution representations. The core of our approach is a multi-scale residual block containing the following key elements: (a) parallel multi-resolution convolution streams for extracting multi-scale features, (b) information exchange across the multi-resolution streams, (c) non-local attention mechanism for capturing contextual information, and (d) attention based multi-scale feature aggregation. Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details. Extensive experiments on six real image benchmark datasets demonstrate that our method, named as MIRNet-v2, achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement. The source code and pre-trained models are available at https://github.com/swz30/MIRNetv2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪山飞龙发布了新的文献求助10
刚刚
刚刚
李健春发布了新的文献求助10
刚刚
1秒前
fanfan发布了新的文献求助10
2秒前
2秒前
3秒前
旺大财发布了新的文献求助10
5秒前
cistronic发布了新的文献求助10
5秒前
5秒前
7秒前
lzt应助白色的猫猫采纳,获得10
8秒前
乌萨奇完成签到 ,获得积分10
8秒前
8秒前
9秒前
大1完成签到,获得积分10
9秒前
fanfan完成签到,获得积分10
9秒前
勤奋的含蕾完成签到,获得积分10
9秒前
温温完成签到,获得积分10
10秒前
zht发布了新的文献求助10
10秒前
hbhbj完成签到,获得积分10
12秒前
12秒前
陈佩chenpei发布了新的文献求助10
14秒前
太澜学了发布了新的文献求助10
14秒前
狂野盼易完成签到,获得积分10
14秒前
杨昭发布了新的文献求助10
15秒前
能干的邹完成签到 ,获得积分10
17秒前
粥粥顺利发布了新的文献求助10
17秒前
王佳宜发布了新的文献求助10
18秒前
背后枕头完成签到,获得积分10
21秒前
脑洞疼应助零零零零采纳,获得10
26秒前
29秒前
UY完成签到,获得积分10
29秒前
30秒前
张小馨完成签到 ,获得积分10
33秒前
上官若男应助张展鹏采纳,获得10
33秒前
isonomia给isonomia的求助进行了留言
35秒前
lxjp完成签到,获得积分10
36秒前
孔半仙发布了新的文献求助10
37秒前
39秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4096639
求助须知:如何正确求助?哪些是违规求助? 3634472
关于积分的说明 11520964
捐赠科研通 3345069
什么是DOI,文献DOI怎么找? 1838396
邀请新用户注册赠送积分活动 905960
科研通“疑难数据库(出版商)”最低求助积分说明 823409