An efficient multi-scale CNN model with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces

脑-机接口 计算机科学 运动表象 卷积神经网络 人工智能 脑电图 模式识别(心理学) 支持向量机 稳健性(进化) 分类器(UML) 语音识别 机器学习 心理学 生物化学 化学 精神科 基因
作者
Arunabha M. Roy
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:74: 103496-103496 被引量:91
标识
DOI:10.1016/j.bspc.2022.103496
摘要

Electroencephalogram (EEG) based motor imagery (MI) classification is an important aspect in brain-machine interfaces (BMIs) which bridges between neural system and computer devices decoding brain signals into recognizable machine commands. However, the MI classification task is challenging due to inherent complex properties, inter-subject variability, and low signal-to-noise ratio (SNR) of EEG signals. To overcome the above-mentioned issues, the current work proposes an efficient multi-scale convolutional neural network (MS-CNN) which can extract the distinguishable features of several non-overlapping canonical frequency bands of EEG signals from multiple scales for MI-BCI classification. In the framework, discriminant user-specific features have been extracted and integrated to improve the accuracy and performance of the CNN classifier. Additionally, different data augmentation methods have been implemented to further improve the accuracy and robustness of the model. The model achieves an average classification accuracy of 93.74% and Cohen’s kappa-coefficient of 0.92 on the BCI competition IV2b dataset outperforming several baseline and current state-of-the-art EEG-based MI classification models. The proposed algorithm effectively addresses the shortcoming of existing CNN-based EEG-MI classification models and significantly improves the classification accuracy. The current framework can provide a stimulus for designing efficient and robust real-time human-robot interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张立佳完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
yebhquetxi发布了新的文献求助10
2秒前
Hello应助LiYJS采纳,获得10
2秒前
Allen发布了新的文献求助10
2秒前
深情安青应助等待映安采纳,获得30
3秒前
ZhouYW应助冰阔罗采纳,获得10
3秒前
科研通AI2S应助Vlory采纳,获得10
3秒前
4秒前
研友_VZG7GZ应助你快睡吧采纳,获得10
4秒前
4秒前
4秒前
lii发布了新的文献求助10
4秒前
科研通AI5应助wangqinlei采纳,获得10
4秒前
4秒前
sunhao发布了新的文献求助10
5秒前
5秒前
6秒前
Doraemon完成签到,获得积分10
6秒前
Gu完成签到,获得积分10
7秒前
7秒前
7秒前
穆里尼奥完成签到,获得积分10
8秒前
雷寒云发布了新的文献求助10
9秒前
STARY发布了新的文献求助30
9秒前
9秒前
明亮紫夏完成签到,获得积分10
10秒前
11秒前
正直涔雨发布了新的文献求助10
12秒前
杜阿拉阿拉完成签到,获得积分20
13秒前
14秒前
Allen完成签到,获得积分10
14秒前
wangqinlei发布了新的文献求助10
15秒前
小二郎应助hgh采纳,获得10
16秒前
16秒前
17秒前
皮卡丘2023发布了新的文献求助10
18秒前
Owen应助精明的忆灵采纳,获得10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791873
求助须知:如何正确求助?哪些是违规求助? 3336211
关于积分的说明 10279514
捐赠科研通 3052867
什么是DOI,文献DOI怎么找? 1675394
邀请新用户注册赠送积分活动 803397
科研通“疑难数据库(出版商)”最低求助积分说明 761278