细胞生物学
Wnt信号通路
间充质干细胞
MFN2型
厌氧糖酵解
生物
细胞分化
诱导多能干细胞
基因敲除
化学
糖酵解
信号转导
线粒体融合
胚胎干细胞
生物化学
细胞凋亡
新陈代谢
基因
线粒体DNA
作者
Lidi Deng,Siqi Yi,Xiaohui Yin,Li Yang,Qingxian Luan
标识
DOI:10.1186/s13287-022-02836-w
摘要
Mitofusin-2 (MFN2) is a kind of GTPase that participates in the regulation of mitochondrial fusion, which is related to a variety of physiological and pathological processes, including energy metabolism, cell differentiation, and embryonic development. However, it remains unclear whether MFN2 is involved in the metabolism and osteogenic differentiation of mesenchymal stem cells (MSCs).MFN2 knockdown (MFN2-KD) and MFN2-overexpressing (MFN2-OE) induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) were constructed by lentivirus. The commercial kits were utilized to detect the glycolysis and oxidative phosphorylation (OXPHOS) rate. Flow cytometry, Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), RNA-seq, immunofluorescence, and immunoprecipitation were employed for phenotype and molecular mechanism assessment.We demonstrated that MFN2 and Wnt/β-catenin signaling pathway regulated glycolysis of iPSC-MSCs. The lack of MFN2 promoted the osteogenic differentiation of iPSC-MSCs, and aerobic glycolysis in the presence of sufficient oxygen, which increased glucose consumption and lactic acid production, as well as the glycolytic enzyme activity and gene expression. Inhibiting the Wnt/β-catenin signaling pathway normalized the enhanced glycolytic rate and osteogenic differentiation of MFN2-KD iPSC-MSCs. MFN2-OE iPSC-MSCs displayed the opposite phenotype.Downregulating MFN2 promotes osteogenic differentiation of iPSC-MSCs through aerobic glycolysis mediated by the Wnt/β-catenin signaling pathway. Our research reveals the new function of MFN2 in regulating the osteogenic differentiation and energy metabolism of MSCs, which will provide a new therapeutic target and theoretical basis for alveolar bone repair and periodontal regenerative treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI