Fuzzy transfer learning in time series forecasting for stock market prices

股票市场 计算机科学 时间序列 模糊逻辑 平滑的 库存(枪支) 学习迁移 股市预测 人工智能 机器学习 数据挖掘 计量经济学 经济 工程类 古生物学 生物 机械工程 计算机视觉
作者
Shanoli Samui Pal,Samarjit Kar
出处
期刊:Soft Computing [Springer Science+Business Media]
卷期号:26 (14): 6941-6952 被引量:13
标识
DOI:10.1007/s00500-021-06648-7
摘要

Transfer learning involves transferring prior knowledge of solving similar problems in order to achieve quick and efficient solution. The aim of fuzzy transfer learning is to transfer prior knowledge in an imprecise environment. Time series like stock market data are nonlinear in nature, and movement of stock is uncertain, so it is quite difficult following the stock market and in decision making. In this study, we propose a method to forecast stock market time series in the situation when we can use prior experience to make decisions. Fuzzy transfer learning (FuzzyTL) is based on knowledge transfer in that and adapting rules obtained domain. Three different stock market time series data sets are used for comparative study. It is observed that the effect of knowledge transferring works well together with smoothing of dependent attributes as the stock market data fluctuate with time. Finally, we give an empirical application in Shenzhen stock market with larger data sets to demonstrate the performance of the model. We have explored FuzzyTL in time series prediction to understand the essence of FuzzyTL. We were working on the question of the capability of FuzzyTL in improving prediction accuracy. From the comparisons, it can be said fuzzy transfer learning with smoothing improves prediction accuracy efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxjbuaa应助YYBAS采纳,获得20
刚刚
科研通AI6应助qiao采纳,获得10
刚刚
wy.he应助丁娜采纳,获得10
刚刚
刚刚
刚刚
1秒前
风月无边发布了新的文献求助10
1秒前
1秒前
1秒前
RJ发布了新的文献求助10
2秒前
2秒前
wxyshare应助端端采纳,获得10
2秒前
2秒前
虚心的树叶完成签到,获得积分10
3秒前
3秒前
yeyeye发布了新的文献求助10
3秒前
脑洞疼应助呼呼采纳,获得10
3秒前
4秒前
bkagyin应助展锋采纳,获得10
5秒前
华仔应助莫西莫西采纳,获得10
5秒前
爱雪的猫完成签到,获得积分10
5秒前
小蘑菇应助专注的妍采纳,获得10
5秒前
浮游应助YYBAS采纳,获得10
6秒前
6秒前
6秒前
Valentina发布了新的文献求助10
6秒前
YY发布了新的文献求助10
7秒前
yy完成签到,获得积分10
7秒前
田的柠檬水完成签到,获得积分10
7秒前
7秒前
7秒前
小二郎应助千崧采纳,获得10
7秒前
Tzu完成签到,获得积分20
7秒前
yufei完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261651
求助须知:如何正确求助?哪些是违规求助? 4422731
关于积分的说明 13767337
捐赠科研通 4297220
什么是DOI,文献DOI怎么找? 2357773
邀请新用户注册赠送积分活动 1354169
关于科研通互助平台的介绍 1315315