Automated surface texture analysis via Discrete Cosine Transform and Discrete Wavelet Transform

离散余弦变换 波纹度 离散小波变换 人工智能 表面粗糙度 计算机科学 表面光洁度 纹理(宇宙学) 曲面(拓扑) 启发式 模式识别(心理学) 算法 数学 小波变换 小波 计算机视觉 材料科学 几何学 图像(数学) 复合材料
作者
Melih C. Yesilli,Jisheng Chen,Firas A. Khasawneh,Yang Guo
出处
期刊:Precision Engineering-journal of The International Societies for Precision Engineering and Nanotechnology [Elsevier]
卷期号:77: 141-152 被引量:20
标识
DOI:10.1016/j.precisioneng.2022.05.006
摘要

Surface roughness and texture are critical to the functional performance of engineering components. The ability to analyze roughness and texture effectively and efficiently is much needed to ensure surface quality in many surface generation processes, such as machining, surface mechanical treatment, etc. Discrete Wavelet Transform (DWT) and Discrete Cosine Transform (DCT) are two commonly used signal decomposition tools for surface roughness and texture analysis. Both methods require selecting a threshold to decompose a given surface into its three main components: form, waviness, and roughness. However, although DWT and DCT are part of the ISO surface finish standards, there exists no systematic guidance on how to compute these thresholds, and they are often manually selected on case by case basis. This makes utilizing these methods for studying surfaces dependent on the user's judgment and limits their automation potential. Therefore, we present two automatic threshold selection algorithms based on information theory and signal energy. We use machine learning to validate the success of our algorithms both using simulated surfaces as well as digital microscopy images of machined surfaces. Specifically, we generate feature vectors for each surface area or profile and apply supervised classification. Comparing our results with the heuristic threshold selection approach shows good agreement with mean accuracies as high as 95\%. We also compare our results with Gaussian filtering (GF) and show that while GF results for areas can yield slightly higher accuracies, our results outperform GF for surface profiles. We further show that our automatic threshold selection has significant advantages in terms of computational time as evidenced by decreasing the number of mode computations by an order of magnitude compared to the heuristic thresholding for DCT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
清爽饼干发布了新的文献求助10
2秒前
共享精神应助调皮以寒采纳,获得10
2秒前
pcg完成签到,获得积分10
3秒前
韩德胜完成签到 ,获得积分10
3秒前
樊星完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
6秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
在水一方应助铜锣烧采纳,获得10
8秒前
桐桐应助U123456采纳,获得30
10秒前
zhaopenghui发布了新的文献求助10
10秒前
11秒前
玩命的黑裤应助舒适访彤采纳,获得10
11秒前
清爽饼干完成签到,获得积分10
12秒前
12秒前
12秒前
善学以致用应助smile采纳,获得10
14秒前
HAO完成签到,获得积分10
14秒前
大模型应助蓝天采纳,获得10
14秒前
晴朗的蓝完成签到,获得积分10
14秒前
15秒前
15秒前
sdshi发布了新的文献求助10
16秒前
Smallriver发布了新的文献求助10
17秒前
17秒前
爆米花应助Lxy_zb采纳,获得10
17秒前
榴莲姑娘发布了新的文献求助30
18秒前
19秒前
可舒发布了新的文献求助10
19秒前
希望天下0贩的0应助Jun采纳,获得10
20秒前
22秒前
GUO发布了新的文献求助10
22秒前
serenity完成签到 ,获得积分10
22秒前
hahaya完成签到,获得积分20
22秒前
三三完成签到,获得积分10
23秒前
U123456发布了新的文献求助30
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553450
求助须知:如何正确求助?哪些是违规求助? 4637983
关于积分的说明 14651924
捐赠科研通 4579900
什么是DOI,文献DOI怎么找? 2511951
邀请新用户注册赠送积分活动 1486817
关于科研通互助平台的介绍 1457747