Machine Learning Prediction of Antimicrobial Peptides

抗菌肽 抗菌剂 抗寄生虫的 计算生物学 抗真菌 生物 机器学习 人工智能 蛋白酶 计算机科学 微生物学 生物化学 医学 病理
作者
Guangshun Wang,Iosif I. Vaisman,Monique L. van Hoek
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 1-37 被引量:57
标识
DOI:10.1007/978-1-0716-1855-4_1
摘要

Antibiotic resistance constitutes a global threat and could lead to a future pandemic. One strategy is to develop a new generation of antimicrobials. Naturally occurring antimicrobial peptides (AMPs) are recognized templates and some are already in clinical use. To accelerate the discovery of new antibiotics, it is useful to predict novel AMPs from the sequenced genomes of various organisms. The antimicrobial peptide database (APD) provided the first empirical peptide prediction program. It also facilitated the testing of the first machine-learning algorithms. This chapter provides an overview of machine-learning predictions of AMPs. Most of the predictors, such as AntiBP, CAMP, and iAMPpred, involve a single-label prediction of antimicrobial activity. This type of prediction has been expanded to antifungal, antiviral, antibiofilm, anti-TB, hemolytic, and anti-inflammatory peptides. The multiple functional roles of AMPs annotated in the APD also enabled multi-label predictions (iAMP-2L, MLAMP, and AMAP), which include antibacterial, antiviral, antifungal, antiparasitic, antibiofilm, anticancer, anti-HIV, antimalarial, insecticidal, antioxidant, chemotactic, spermicidal activities, and protease inhibiting activities. Also considered in predictions are peptide posttranslational modification, 3D structure, and microbial species-specific information. We compare important amino acids of AMPs implied from machine learning with the frequently occurring residues of the major classes of natural peptides. Finally, we discuss advances, limitations, and future directions of machine-learning predictions of antimicrobial peptides. Ultimately, we may assemble a pipeline of such predictions beyond antimicrobial activity to accelerate the discovery of novel AMP-based antimicrobials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
机智猴完成签到,获得积分10
2秒前
agui完成签到 ,获得积分10
2秒前
kdkfjaljk发布了新的文献求助20
2秒前
yy完成签到,获得积分10
3秒前
Xiangyang完成签到 ,获得积分10
3秒前
4秒前
Maestro_S发布了新的文献求助30
4秒前
枳花完成签到,获得积分10
4秒前
Leif举报LEI求助涉嫌违规
4秒前
4秒前
Clovis33完成签到 ,获得积分10
5秒前
勿明完成签到,获得积分10
5秒前
饺子你别跑完成签到,获得积分20
5秒前
无花果应助Aurinse采纳,获得10
6秒前
大模型应助高兴的爆米花采纳,获得10
6秒前
AnitaAdal应助可耐的毛衣采纳,获得10
6秒前
蜗牛fei完成签到,获得积分10
7秒前
7秒前
kikiii发布了新的文献求助10
7秒前
赵世璧完成签到,获得积分10
8秒前
dreammaker完成签到,获得积分10
8秒前
传奇3应助桃桃采纳,获得10
8秒前
科研通AI5应助xiaoruirx采纳,获得10
9秒前
666发布了新的文献求助10
9秒前
Jasper应助afeiwoo采纳,获得10
9秒前
谨慎的雨琴完成签到,获得积分10
9秒前
9秒前
csatsd发布了新的文献求助10
11秒前
下次见完成签到,获得积分10
11秒前
白临渊完成签到,获得积分10
11秒前
大个应助浅墨采纳,获得10
11秒前
田様应助三点一共采纳,获得10
12秒前
12秒前
你键盘哥发布了新的文献求助10
12秒前
MZCCaiajie完成签到,获得积分10
13秒前
科研通AI5应助青鸾采纳,获得10
14秒前
小小完成签到,获得积分20
14秒前
15秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817421
求助须知:如何正确求助?哪些是违规求助? 3360775
关于积分的说明 10409208
捐赠科研通 3078870
什么是DOI,文献DOI怎么找? 1690820
邀请新用户注册赠送积分活动 814169
科研通“疑难数据库(出版商)”最低求助积分说明 768060