Clinical metabolomics for inborn errors of metabolism

代谢组学 计算生物学 代谢物 代谢物分析 代谢组 生物信息学 代谢途径 新陈代谢 生物 计算机科学 生物化学
作者
Lisa A. Ford,Matthew Mitchell,Jacob Wulff,Anne M. Evans,Adam D. Kennedy,Sarah H. Elsea,Bryan M. Wittmann,Douglas R. Toal
出处
期刊:Advances in Clinical Chemistry [Elsevier BV]
卷期号:: 79-138 被引量:5
标识
DOI:10.1016/bs.acc.2021.09.001
摘要

Metabolism is a highly regulated process that provides nutrients to cells and essential building blocks for the synthesis of protein, DNA and other macromolecules. In healthy biological systems, metabolism maintains a steady state in which the concentrations of metabolites are relatively constant yet are subject to metabolic demands and environmental stimuli. Rare genetic disorders, such as inborn errors of metabolism (IEM), cause defects in regulatory enzymes or proteins leading to metabolic pathway disruption and metabolite accumulation or deficiency. Traditionally, the laboratory diagnosis of IEMs has been limited to analytical methods that target specific metabolites such as amino acids and acyl carnitines. This approach is effective as a screening method for the most common IEM disorders but lacks the comprehensive coverage of metabolites that is necessary to identify rare disorders that present with nonspecific clinical symptoms. Fortunately, advancements in technology and data analytics has introduced a new field of study called metabolomics which has allowed scientists to perform comprehensive metabolite profiling of biological systems to provide insight into mechanism of action and gene function. Since metabolomics seeks to measure all small molecule metabolites in a biological specimen, it provides an innovative approach to evaluating disease in patients with rare genetic disorders. In this review we provide insight into the appropriate application of metabolomics in clinical settings. We discuss the advantages and limitations of the method and provide details related to the technology, data analytics and statistical modeling required for metabolomic profiling of patients with IEMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Stella采纳,获得10
3秒前
量子星尘发布了新的文献求助50
3秒前
zzm发布了新的文献求助10
3秒前
浮游应助LIHAO采纳,获得10
3秒前
KDone完成签到 ,获得积分10
3秒前
50完成签到 ,获得积分10
4秒前
清秀一曲完成签到 ,获得积分10
4秒前
5秒前
大个应助白木采纳,获得10
5秒前
吕君完成签到,获得积分10
6秒前
summer完成签到,获得积分10
6秒前
7秒前
7秒前
活力的夏之完成签到,获得积分10
8秒前
耍酷安寒完成签到,获得积分20
10秒前
12秒前
12秒前
13秒前
qingfengnai完成签到,获得积分10
14秒前
科目三应助uvofuofy采纳,获得10
15秒前
xzm完成签到,获得积分10
16秒前
17秒前
怕黑的凌柏完成签到,获得积分10
18秒前
xinxin发布了新的文献求助20
19秒前
Jj7完成签到,获得积分0
19秒前
陈丰滢完成签到,获得积分20
20秒前
Jasper应助AL采纳,获得10
20秒前
21秒前
23秒前
马宁婧发布了新的文献求助10
24秒前
xyj完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助50
25秒前
26秒前
小冰尜完成签到,获得积分10
26秒前
27秒前
赘婿应助司空悒采纳,获得10
27秒前
27秒前
浮游应助辛勤香岚采纳,获得10
28秒前
浮游应助虚心的清采纳,获得10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109490
求助须知:如何正确求助?哪些是违规求助? 4318187
关于积分的说明 13453817
捐赠科研通 4148159
什么是DOI,文献DOI怎么找? 2273070
邀请新用户注册赠送积分活动 1275187
关于科研通互助平台的介绍 1213446