亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Biomarkers identification for Schizophrenia via VAE and GSDAE-based data augmentation

计算机科学 人工智能 模式识别(心理学) 特征选择 自编码 生成模型 鉴定(生物学) 正规化(语言学) 推论 机器学习 数据挖掘 深度学习 生成语法 植物 生物
作者
Qi Huang,Chen Qiao,Kaili Jing,Xu Zhu,Kai Ren
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:146: 105603-105603 被引量:12
标识
DOI:10.1016/j.compbiomed.2022.105603
摘要

Deep learning has made great progress in analyzing MRI data, while the MRI data with high dimensional but small sample size (HDSSS) brings many limitations to biomarkers identification. Few-shot learning has been proposed to solve such problems and data augmentation is a typical method of it. The variational auto-encoder (VAE) is a generative method based on variational Bayesian inference that is used for data augmentation. Graph regularized sparse deep autoencoder (GSDAE) can reconstruct sparse samples and keep the manifold structure of data which will facilitate biomarkers selection greatly. To generate better HDSSS data for biomarkers identification, a data augmentation method based on VAE and GSDAE is proposed in this paper, termed GS-VDAE. Instead of utilizing the final products of GSDAE, our proposed model embeds the generation procedure into GSDAE for augmentation. In this way, the augmented samples will be rooted in the significant features extracted from the original samples, which can ensure the newly formed samples contain the most significant characteristics of the original samples. The classification accuracy of the samples generated directly from VAE is 0.74, while the classification accuracy of the samples generated from GS-VDAE is 0.84, which proves the validity of our model. Additionally, a regression feature selection method with truncated nuclear norm regularization is chosen for biomarkers selection. The biomarkers selection results of schizophrenia data reveal that the augmented samples obtained by our proposed method can get higher classification accuracy with less ranked features compared with original samples, which proves the validation of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
haralee发布了新的文献求助10
6秒前
善学以致用应助WANG采纳,获得10
7秒前
yilin完成签到 ,获得积分10
11秒前
SDNUDRUG完成签到,获得积分10
19秒前
无花果应助科研通管家采纳,获得10
35秒前
丘比特应助科研通管家采纳,获得10
35秒前
可爱的函函应助jiiie采纳,获得10
51秒前
云木完成签到 ,获得积分10
59秒前
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
1分钟前
jane发布了新的文献求助10
1分钟前
1分钟前
桐桐应助冬天该很好采纳,获得10
1分钟前
jane完成签到,获得积分20
1分钟前
仁爱水之完成签到 ,获得积分10
1分钟前
2分钟前
orixero应助科研通管家采纳,获得10
2分钟前
一只柯羊发布了新的文献求助10
2分钟前
小新小新完成签到 ,获得积分10
2分钟前
efren1806完成签到,获得积分10
3分钟前
张雨欣完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
机灵白桃发布了新的文献求助30
4分钟前
叶子完成签到 ,获得积分10
4分钟前
4分钟前
SciGPT应助科研通管家采纳,获得10
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
4分钟前
JY发布了新的文献求助10
4分钟前
jumbaumba完成签到,获得积分10
4分钟前
小奋青完成签到 ,获得积分10
5分钟前
6分钟前
山橘月发布了新的文献求助10
6分钟前
一一完成签到 ,获得积分0
7分钟前
称心如意完成签到 ,获得积分10
7分钟前
呆呆小猪完成签到,获得积分10
8分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244162
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759483