Enhancement mechanism of Te doping on microstructure, wettability and mechanical properties of Sn–Bi-based solder

焊接 材料科学 金属间化合物 润湿 兴奋剂 蠕动 极限抗拉强度 相(物质) 微观结构 复合材料 变形(气象学) 冶金 光电子学 化学 有机化学 合金
作者
Zhuangzhuang Hou,Xiuchen Zhao,Yue Gu,Chengwen Tan,Yongjun Huo,Hong Li,Sujun Shi,Ying Liu
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:848: 143445-143445 被引量:22
标识
DOI:10.1016/j.msea.2022.143445
摘要

Sn–Bi-based solder alloys have sparked tremendous research interest towards the development of low-temperature interconnecting materials in multi-level packaging interconnections electronic devices. Nevertheless, the research speed of solder is elusive to match well with the rapid development of integrated circuit design and manufacturing, which leads to the slow renewal course of electronic products. In the pursue for more effective modification strategies, Te was selected to be doped into Sn58Bi–1Sb (SBS) solder. As expected by the design, Te existed in the solder matrix in the form of solid solution and intermetallic compound simultaneously. To our satisfaction, Te enormously improved both the tensile strength and plasticity of the SBS solder. This largely circumvents the negative correlation between strength and plasticity during the modification process. Additionally, Te element significantly optimized the thermal properties, wettability, and creep resistance of SBS solder. Many tiny Bi particles embedded in Sn phase and strengthened the SBST solder matrix as the second phase. More strikingly, numerous Bi twin crystal structures were observed in the Sn58Bi–1Sb1Te (SBST) solder matrix, which occurred in Sn–Bi-based solder matrixes first time. The Bi phase twin represents preferable deformation ability of Bi phase and the plasticity of the solder matrix. It indicated that the doping of Te comprehensively enhanced the performance of SBS solder and may opened new horizons to the design route of alloying modification for Sn–Bi-based solder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FBQZDJG2122完成签到,获得积分10
1秒前
酷炫抽屉完成签到 ,获得积分10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得30
1秒前
orixero应助科研通管家采纳,获得10
1秒前
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
小李完成签到 ,获得积分10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
尉迟希望应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
FashionBoy应助WRECKIE采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
尉迟希望应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得30
2秒前
在水一方应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
zzz完成签到,获得积分10
3秒前
Ava应助谦让的思枫采纳,获得10
3秒前
3秒前
Cc完成签到,获得积分10
4秒前
gomm完成签到,获得积分10
4秒前
大雨完成签到,获得积分10
4秒前
5秒前
5秒前
yao完成签到,获得积分10
5秒前
程昕发布了新的文献求助10
6秒前
Wonder完成签到,获得积分10
6秒前
打打应助pengpur采纳,获得10
7秒前
张亚宁完成签到,获得积分10
7秒前
Zzz完成签到,获得积分10
7秒前
猫喵喵完成签到,获得积分10
8秒前
悦耳绿真发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5282351
求助须知:如何正确求助?哪些是违规求助? 4436378
关于积分的说明 13808686
捐赠科研通 4316980
什么是DOI,文献DOI怎么找? 2369537
邀请新用户注册赠送积分活动 1364901
关于科研通互助平台的介绍 1328397