亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

End-to-end EEG artifact removal method via nested generative adversarial network

作者
T. H. Yang,Shengsheng Cai,Dongyang Xu,Nan Hu
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:11 (6): 065054-065054
标识
DOI:10.1088/2057-1976/ae1a8c
摘要

Abstract As physiological artifacts commonly overlap with EEG signals in both time and frequency domains, developing an effective end-to-end EEG artifact removal method is essential for a brain-computer interface (BCI) system. An end-to-end artifact removal method based on nested generative adversarial network (GAN) is proposed, to recover the EEG signals from artifact-contaminated ones. The nested GAN consists of two components: an inner GAN operating in time-frequency domain and an outer GAN functioning in time domain. A light-weighted complex-valued restormer, designed in time-frequency domain, is employed as the generator to reconstruct the denoised EEG signal. Two metric discriminators in the inner GAN and two multi-resolution discriminators in the outer GAN are used, and gradient balance is used to address the partial learning issue during training. The performance of the nested GAN has been evaluated in the realistic EEG dataset and semi-synthetic dataset. Compared to the benchmark methods, the proposed one achieved best average performance evaluation metrics, including mean square error (MSE) = 0.098, Pearson correlation coefficient (PCC) = 0.892, relative root MSE (RRMSE) = 0.065, the percentage reduction of time domain artifacts ( η temporal ) = 71.6%, and the percentage reduction of frequency domain artifacts ( η spectral ) = 76.9%. The performance of artifact removal also showed robustness across a wide range of signal-to-noise ratio (SNR) levels.The superior performance of the proposed end-to-end artifact removal method is expected to contribute to the advancement of BCI system development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
科研通AI6应助11采纳,获得10
6秒前
二三语逢山外山完成签到 ,获得积分10
8秒前
211JZH完成签到 ,获得积分10
14秒前
17秒前
电量过低完成签到 ,获得积分10
32秒前
大鼻子的新四岁完成签到,获得积分10
36秒前
mmccc1发布了新的文献求助30
54秒前
子铭关注了科研通微信公众号
1分钟前
1分钟前
Eason完成签到,获得积分10
1分钟前
1分钟前
mmccc1完成签到,获得积分10
1分钟前
星辰大海应助七大洋的风采纳,获得10
1分钟前
jjyy发布了新的文献求助10
1分钟前
科研通AI6应助LLLZX采纳,获得10
1分钟前
科研通AI6应助LLLZX采纳,获得10
1分钟前
科研通AI6应助LLLZX采纳,获得10
1分钟前
11发布了新的文献求助10
1分钟前
开心飞烟完成签到 ,获得积分10
1分钟前
顾矜应助碧蓝的雅青采纳,获得10
1分钟前
1分钟前
1分钟前
xiaohardy完成签到,获得积分10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
吴彦祖应助科研通管家采纳,获得10
1分钟前
吴彦祖应助科研通管家采纳,获得10
1分钟前
吴彦祖应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
呆萌的紫霜完成签到 ,获得积分10
1分钟前
2分钟前
洛七落完成签到 ,获得积分10
2分钟前
科研通AI6应助追风少年采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498246
求助须知:如何正确求助?哪些是违规求助? 4595544
关于积分的说明 14449296
捐赠科研通 4528234
什么是DOI,文献DOI怎么找? 2481437
邀请新用户注册赠送积分活动 1465554
关于科研通互助平台的介绍 1438310