Single-cell RNA sequencing and transcriptomic analysis reveal key genes and regulatory mechanisms in sepsis

生物 转录组 基因 RNA序列 计算生物学 核糖核酸 遗传学 基因表达
作者
Qingping Mo,Qingying Mo,Fansen Mo
出处
期刊:Biotechnology & Genetic Engineering Reviews [Taylor & Francis]
卷期号:40 (3): 1636-1658 被引量:4
标识
DOI:10.1080/02648725.2023.2196475
摘要

ABSTRACTThe pathogenesis of sepsis, with a high mortality rate and often poor prognosis, has not been fully elucidated. Therefore, an in-depth study on the pathogenesis of sepsis at the molecular level is essential to identify key sepsis-related genes. The aim of this study was to explore the key genes and potential molecular mechanisms of sepsis using a bioinformatics approach. In addition, key genes with miRNA network correlation analysis and immune infiltration correlation analysis were investigated. The scRNA dataset (GSE167363) and RNA-seq dataset (GSE65682, GSE134347) from GEO database were used for screening out differentially expressed genes using single-cell sequencing and transcriptome sequencing. The analysis of immune infiltration was evaluated by the CIBERSORT method. Key genes and possible mechanisms were identified by WGCNA analysis, GSVA analysis, GSEA enrichment analysis and regulatory network analysis, and miRNA networks associated with key genes were constructed. Nine key genes associated with the development of sepsis, namely IL7R, CD3D, IL32, GPR183, HLA-DPB1, CD81, PEBP1, NCL, and ETS1 were screened, and the specific signaling mechanisms associated with the key genes causing sepsis were predicted. Immune profiling showed immune heterogeneity between control and sepsis samples. A regulatory network of 82 miRNAs, 266 pairs of mRNA-miRNA relationship pairs was also constructed. These nine key genes have the potential to become biomarkers for the diagnosis of sepsis and provide new targets and research directions for the treatment of sepsis.KEYWORDS: Sepsiskey genesmiRNAimmune infiltration Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementThe datasets included in this study are available from the online public database. The data that support our findings are available from the databases: GEO database (https://www.ncbi.nlm.nih.gov/geo/info/datasets.html), Gene Atlas gene mapping database (http://geneatlas.roslin.ed.ac.uk/) and GeneCards database(https://www.genecards.org/).AbbreviationsGEO database: Gene Expression Omnibus; NCBI: National Center for Biotechnology Information; TSNE: T-Distributed Stochastic Neighbor Embedding; PCA: Principal Component Analysis; WGCNA: Weighted Gene Co-expression Network Analysis; TOM: Topological Overlap Matrix; GSVA: Gene Set Variance Analysis; GSEA: Gene Set Enrichment Analysis; GWAS: Genome-wide Association Study; NES: Normalized Enrichment Score; Cmap database: Connectivity Map; KEGG: Kyoto Encyclopedia of Genes and Genomes; SNP: Single Nucleotide Polymorphisms; LASSO: Least absolute shrinkage and selection operator; ROC: Receiver-operating characteristic; AUC: Area under the ROC curve; MHC: Major Histocompatibility Complex; PC: principal Component;Author contributionsConceptualization, QPM, FSM; writing-original draft pre-paration, QPM, QYM, FSM; writing – review and editing, QPM, QYM, FSM. All authors reviewed and approved the final version of the manuscript. All authors read and approved the final manuscript.Supplemental dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/02648725.2023.2196475.Additional informationFundingThere is no funding to report.Notes on contributorsQingping MoQingping Mo is a graduate of Southern Medical University with a master's degree and has received 3 years of residency training in Zhujiang Hospital of Southern Medical University.Qingying MoQingying Mo received her undergraduate clinical hospital education for 5 years at Shuda College of Hunan Normal University and has now graduated with her undergraduate degree.Fansen MoFanSen Mo received 5 years of undergraduate education in clinical medicine at South China University and has now graduated with his undergraduate degree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大胆的弼完成签到,获得积分10
1秒前
1秒前
Jin发布了新的文献求助10
2秒前
4秒前
完美世界应助wxyes采纳,获得10
5秒前
6秒前
7秒前
这个夏天完成签到,获得积分10
8秒前
香蕉觅云应助雪鸽鸽采纳,获得10
8秒前
9秒前
lewis_xl发布了新的文献求助10
12秒前
zho发布了新的文献求助10
14秒前
Mayday发布了新的文献求助10
14秒前
奥特曼完成签到,获得积分10
16秒前
19秒前
nn完成签到,获得积分10
19秒前
不开心就吃糖完成签到 ,获得积分10
20秒前
20秒前
西西弗斯完成签到,获得积分10
20秒前
shenxian82133完成签到,获得积分10
20秒前
852应助yy采纳,获得10
20秒前
简单完成签到 ,获得积分10
21秒前
积极冷霜完成签到,获得积分10
23秒前
木头完成签到,获得积分10
23秒前
雪鸽鸽发布了新的文献求助10
24秒前
25秒前
奥特曼发布了新的文献求助10
26秒前
lewis_xl完成签到,获得积分10
27秒前
Pengcheng完成签到 ,获得积分10
28秒前
31秒前
听风完成签到,获得积分10
31秒前
32秒前
我是老大应助天真琳采纳,获得10
32秒前
34秒前
小白完成签到,获得积分10
35秒前
小熙完成签到 ,获得积分10
35秒前
leiiiiiiii完成签到,获得积分10
36秒前
weishao发布了新的文献求助10
37秒前
37秒前
yy发布了新的文献求助10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777801
求助须知:如何正确求助?哪些是违规求助? 3323321
关于积分的说明 10213817
捐赠科研通 3038554
什么是DOI,文献DOI怎么找? 1667549
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275