Single-cell RNA sequencing and transcriptomic analysis reveal key genes and regulatory mechanisms in sepsis

生物 转录组 基因 RNA序列 计算生物学 核糖核酸 遗传学 基因表达
作者
Qingping Mo,Qingying Mo,Fansen Mo
出处
期刊:Biotechnology & Genetic Engineering Reviews [Taylor & Francis]
卷期号:40 (3): 1636-1658 被引量:4
标识
DOI:10.1080/02648725.2023.2196475
摘要

ABSTRACTThe pathogenesis of sepsis, with a high mortality rate and often poor prognosis, has not been fully elucidated. Therefore, an in-depth study on the pathogenesis of sepsis at the molecular level is essential to identify key sepsis-related genes. The aim of this study was to explore the key genes and potential molecular mechanisms of sepsis using a bioinformatics approach. In addition, key genes with miRNA network correlation analysis and immune infiltration correlation analysis were investigated. The scRNA dataset (GSE167363) and RNA-seq dataset (GSE65682, GSE134347) from GEO database were used for screening out differentially expressed genes using single-cell sequencing and transcriptome sequencing. The analysis of immune infiltration was evaluated by the CIBERSORT method. Key genes and possible mechanisms were identified by WGCNA analysis, GSVA analysis, GSEA enrichment analysis and regulatory network analysis, and miRNA networks associated with key genes were constructed. Nine key genes associated with the development of sepsis, namely IL7R, CD3D, IL32, GPR183, HLA-DPB1, CD81, PEBP1, NCL, and ETS1 were screened, and the specific signaling mechanisms associated with the key genes causing sepsis were predicted. Immune profiling showed immune heterogeneity between control and sepsis samples. A regulatory network of 82 miRNAs, 266 pairs of mRNA-miRNA relationship pairs was also constructed. These nine key genes have the potential to become biomarkers for the diagnosis of sepsis and provide new targets and research directions for the treatment of sepsis.KEYWORDS: Sepsiskey genesmiRNAimmune infiltration Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementThe datasets included in this study are available from the online public database. The data that support our findings are available from the databases: GEO database (https://www.ncbi.nlm.nih.gov/geo/info/datasets.html), Gene Atlas gene mapping database (http://geneatlas.roslin.ed.ac.uk/) and GeneCards database(https://www.genecards.org/).AbbreviationsGEO database: Gene Expression Omnibus; NCBI: National Center for Biotechnology Information; TSNE: T-Distributed Stochastic Neighbor Embedding; PCA: Principal Component Analysis; WGCNA: Weighted Gene Co-expression Network Analysis; TOM: Topological Overlap Matrix; GSVA: Gene Set Variance Analysis; GSEA: Gene Set Enrichment Analysis; GWAS: Genome-wide Association Study; NES: Normalized Enrichment Score; Cmap database: Connectivity Map; KEGG: Kyoto Encyclopedia of Genes and Genomes; SNP: Single Nucleotide Polymorphisms; LASSO: Least absolute shrinkage and selection operator; ROC: Receiver-operating characteristic; AUC: Area under the ROC curve; MHC: Major Histocompatibility Complex; PC: principal Component;Author contributionsConceptualization, QPM, FSM; writing-original draft pre-paration, QPM, QYM, FSM; writing – review and editing, QPM, QYM, FSM. All authors reviewed and approved the final version of the manuscript. All authors read and approved the final manuscript.Supplemental dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/02648725.2023.2196475.Additional informationFundingThere is no funding to report.Notes on contributorsQingping MoQingping Mo is a graduate of Southern Medical University with a master's degree and has received 3 years of residency training in Zhujiang Hospital of Southern Medical University.Qingying MoQingying Mo received her undergraduate clinical hospital education for 5 years at Shuda College of Hunan Normal University and has now graduated with her undergraduate degree.Fansen MoFanSen Mo received 5 years of undergraduate education in clinical medicine at South China University and has now graduated with his undergraduate degree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Paracosm发布了新的文献求助10
刚刚
波比有点困完成签到,获得积分10
刚刚
桉韵沁发布了新的文献求助10
1秒前
王羊补牢发布了新的文献求助10
1秒前
1秒前
wwl发布了新的文献求助10
1秒前
Sly发布了新的文献求助10
1秒前
yj1506837246完成签到,获得积分10
2秒前
颜靖仇发布了新的文献求助10
2秒前
hzl完成签到,获得积分10
2秒前
恻隐完成签到,获得积分10
3秒前
pophoo发布了新的文献求助10
3秒前
4秒前
Ji完成签到,获得积分10
4秒前
一只耳发布了新的文献求助20
6秒前
王小豆关注了科研通微信公众号
6秒前
领导范儿应助fugui采纳,获得10
7秒前
薰衣草发布了新的文献求助10
7秒前
LYDC完成签到 ,获得积分10
7秒前
苏灿给韩jl的求助进行了留言
7秒前
7秒前
英姑应助menghongmei采纳,获得10
8秒前
9秒前
搜集达人应助liuhongcan采纳,获得10
9秒前
汉堡包应助雪白皮皮虾采纳,获得10
9秒前
顾矜应助零一采纳,获得10
9秒前
棠真完成签到,获得积分10
9秒前
烟花应助Sly采纳,获得10
10秒前
小黄完成签到,获得积分10
10秒前
10秒前
ronnie完成签到,获得积分10
10秒前
12秒前
12秒前
Anqiang完成签到,获得积分10
12秒前
快乐的小天鹅完成签到,获得积分10
12秒前
guozizi举报瘦瘦怜阳求助涉嫌违规
12秒前
汉堡包应助秋风来临之时采纳,获得10
13秒前
吱吱发布了新的文献求助10
14秒前
15秒前
儒雅的夏山完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Revolution in China and Russia: Reorganizing empires into nation states 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3932694
求助须知:如何正确求助?哪些是违规求助? 3477663
关于积分的说明 10998236
捐赠科研通 3207993
什么是DOI,文献DOI怎么找? 1772620
邀请新用户注册赠送积分活动 859907
科研通“疑难数据库(出版商)”最低求助积分说明 797378