Survival Prediction via Hierarchical Multimodal Co-Attention Transformer: A Computational Histology-Radiology Solution

计算机科学 人工智能 模式 特征(语言学) 可解释性 机器学习 放射科 模式识别(心理学) 医学 社会科学 语言学 哲学 社会学
作者
Zhe Li,Yuming Jiang,Mengkang Lu,Ruijiang Li,Yong Xia
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2678-2689 被引量:18
标识
DOI:10.1109/tmi.2023.3263010
摘要

The rapid advances in deep learning-based computational pathology and radiology have demonstrated the promise of using whole slide images (WSIs) and radiology images for survival prediction in cancer patients. However, most image-based survival prediction methods are limited to using either histology or radiology alone, leaving integrated approaches across histology and radiology relatively underdeveloped. There are two main challenges in integrating WSIs and radiology images: (1) the gigapixel nature of WSIs and (2) the vast difference in spatial scales between WSIs and radiology images. To address these challenges, in this work, we propose an interpretable, weakly-supervised, multimodal learning framework, called Hierarchical Multimodal Co-Attention Transformer (HMCAT), to integrate WSIs and radiology images for survival prediction. Our approach first uses hierarchical feature extractors to capture various information including cellular features, cellular organization, and tissue phenotypes in WSIs. Then the hierarchical radiology-guided co- attention (HRCA) in HMCAT characterizes the multimodal interactions between hierarchical histology-based visual concepts and radiology features and learns hierarchical co- attention mappings for two modalities. Finally, HMCAT combines their complementary information into a multimodal risk score and discovers prognostic features from two modalities by multimodal interpretability. We apply our approach to two cancer datasets (365 WSIs with matched magnetic resonance [MR] images and 213 WSIs with matched computed tomography [CT] images). Our results demonstrate that the proposed HMCAT consistently achieves superior performance over the unimodal approaches trained on either histology or radiology data alone, as well as other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后紫夏完成签到,获得积分10
2秒前
3秒前
青栞发布了新的文献求助10
4秒前
坚定如南完成签到 ,获得积分10
4秒前
慕青应助忧心的寄松采纳,获得10
5秒前
7秒前
8秒前
11秒前
cwn完成签到 ,获得积分10
12秒前
YP_024发布了新的文献求助10
13秒前
carol完成签到,获得积分10
13秒前
taotao完成签到,获得积分10
16秒前
17秒前
VDC应助爱科研的佳慧采纳,获得30
19秒前
tulip完成签到,获得积分10
19秒前
所所应助眯眯眼的朋友采纳,获得10
22秒前
22秒前
24秒前
树袋熊完成签到,获得积分10
25秒前
26秒前
天明发布了新的文献求助30
27秒前
YP_024完成签到,获得积分10
32秒前
33秒前
郭n完成签到 ,获得积分10
35秒前
XRWei完成签到 ,获得积分10
36秒前
PG完成签到 ,获得积分10
36秒前
科研通AI5应助清晨采纳,获得30
36秒前
37秒前
赎罪完成签到 ,获得积分10
39秒前
n0rthstar完成签到,获得积分10
42秒前
48秒前
科研小白完成签到,获得积分10
49秒前
helloworld完成签到,获得积分10
50秒前
专注雨珍完成签到,获得积分10
50秒前
哈哈发布了新的文献求助10
51秒前
64658完成签到,获得积分10
54秒前
55秒前
solidcon发布了新的文献求助10
59秒前
1分钟前
rui完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777977
求助须知:如何正确求助?哪些是违规求助? 3323559
关于积分的说明 10214983
捐赠科研通 3038761
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798276
科研通“疑难数据库(出版商)”最低求助积分说明 758315