Photon-counting Detector CT with Deep Learning Noise Reduction to Detect Multiple Myeloma

医学 核医学 图像质量 图像噪声 放射科 人工智能 计算机科学 图像(数学)
作者
Francis I. Baffour,Nathan R. Huber,Andrea Ferrero,Kishore Rajendran,Katrina N. Glazebrook,Nicholas B. Larson,Shaji Kumar,Joselle Cook,Shuai Leng,Elisabeth R. Shanblatt,Cynthia H. McCollough,Joel G. Fletcher
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (1): 229-236 被引量:10
标识
DOI:10.1148/radiol.220311
摘要

Background Photon-counting detector (PCD) CT and deep learning noise reduction may improve spatial resolution at lower radiation doses compared with energy-integrating detector (EID) CT. Purpose To demonstrate the diagnostic impact of improved spatial resolution in whole-body low-dose CT scans for viewing multiple myeloma by using PCD CT with deep learning denoising compared with conventional EID CT. Materials and Methods Between April and July 2021, adult participants who underwent a whole-body EID CT scan were prospectively enrolled and scanned with a PCD CT system in ultra-high-resolution mode at matched radiation dose (8 mSv for an average adult) at an academic medical center. EID CT and PCD CT images were reconstructed with Br44 and Br64 kernels at 2-mm section thickness. PCD CT images were also reconstructed with Br44 and Br76 kernels at 0.6-mm section thickness. The thinner PCD CT images were denoised by using a convolutional neural network. Image quality was objectively quantified in two phantoms and a randomly selected subset of participants (10 participants; median age, 63.5 years; five men). Two radiologists scored PCD CT images relative to EID CT by using a five-point Likert scale to detect findings reflecting multiple myeloma. The scoring for the matched reconstruction series was blinded to scanner type. Reader-averaged scores were tested with the null hypothesis of equivalent visualization between EID and PCD. Results Twenty-seven participants (median age, 68 years; IQR, 61–72 years; 16 men) were included. The blinded assessment of 2-mm images demonstrated improvement in viewing lytic lesions, intramedullary lesions, fatty metamorphosis, and pathologic fractures for PCD CT versus EID CT (P < .05 for all comparisons). The 0.6-mm PCD CT images with convolutional neural network denoising also demonstrated improvement in viewing all four pathologic abnormalities and detected one or more lytic lesions in 21 of 27 participants compared with the 2-mm EID CT images (P < .001). Conclusion Ultra-high-resolution photon-counting detector CT improved the visibility of multiple myeloma lesions relative to energy-integrating detector CT. © RSNA, 2022 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangsir完成签到,获得积分10
1秒前
Docsiwen完成签到 ,获得积分10
2秒前
非而者厚应助安详忆梅采纳,获得10
3秒前
Cys完成签到,获得积分10
4秒前
最棒哒完成签到 ,获得积分10
5秒前
6秒前
chenjun7080完成签到,获得积分10
6秒前
安详初蓝完成签到 ,获得积分10
6秒前
谭凯文完成签到 ,获得积分10
9秒前
卓卓发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
14秒前
21秒前
星辰大海应助liugm采纳,获得10
21秒前
Alan完成签到,获得积分10
26秒前
27秒前
JamesPei应助科研通管家采纳,获得10
27秒前
安雨笙应助科研通管家采纳,获得10
27秒前
研友_VZG7GZ应助科研通管家采纳,获得10
27秒前
乐乐应助科研通管家采纳,获得10
27秒前
Owen应助科研通管家采纳,获得10
27秒前
赘婿应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
萧水白完成签到,获得积分10
27秒前
可爱的函函应助sinafre采纳,获得10
28秒前
系统提示完成签到,获得积分10
28秒前
jianglili完成签到,获得积分10
29秒前
香蕉书竹完成签到,获得积分10
31秒前
吃的完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
33秒前
38秒前
zhaoyan发布了新的文献求助10
42秒前
MADAO完成签到 ,获得积分10
43秒前
hay完成签到,获得积分10
44秒前
阿曾完成签到 ,获得积分10
45秒前
大模型应助zhaoyan采纳,获得10
48秒前
小李子发布了新的文献求助10
48秒前
今天开心吗完成签到 ,获得积分10
49秒前
传奇3应助shunshun采纳,获得10
50秒前
YH应助沉醉采纳,获得50
52秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864053
求助须知:如何正确求助?哪些是违规求助? 3406339
关于积分的说明 10649231
捐赠科研通 3130285
什么是DOI,文献DOI怎么找? 1726364
邀请新用户注册赠送积分活动 831635
科研通“疑难数据库(出版商)”最低求助积分说明 779990