Machine Learning Models Applied to a GNSS Sensor Network for Automated Bridge Anomaly Detection

全球导航卫星系统应用 异常检测 计算机科学 冗余(工程) 异常(物理) 实时计算 桥(图论) 全球定位系统 结构健康监测 数据挖掘 人工智能 工程类 电信 结构工程 医学 操作系统 物理 内科学 凝聚态物理
作者
Nicolas Manzini,André Orcesi,Christian Thom,Marc-Antoine Brossault,S. Botton,Miguel Ortiz,J. G. Dumoulin
出处
期刊:Journal of Structural Engineering-asce [American Society of Civil Engineers]
卷期号:148 (11) 被引量:6
标识
DOI:10.1061/(asce)st.1943-541x.0003469
摘要

Structural health monitoring (SHM) based on global navigation satellite systems (GNSS) is an interesting solution to provide absolute positions at different locations of a structure in a global reference frame. In particular, low-cost GNSS stations for large-scale bridge monitoring have gained increasing attention these last years because recent experiments showed the ability to achieve a subcentimeter accuracy for continuous monitoring with adequate combinations of antennas and receivers. Technical solutions now allow displacement monitoring of long bridges with a cost-effective deployment of GNSS sensing networks. In particular, the redundancy of observations within the GNSS network with various levels of correlations between the GNSS time series makes such monitoring solution a good candidate for anomaly detection based on machine learning models, using several predictive models for each sensor (based on environmental conditions, or other sensors as input data). This strategy is investigated in this paper based on GNSS time series, and an anomaly indicator is proposed to detect and locate anomalous structural behavior. The proposed concepts are applied to a cable-stayed bridge for illustration, and the comparison between multiple tools highlights recurrent neural networks (RNN) as an effective regression tool. Coupling this tool with the proposed anomaly detection strategy enables one to identify and localize both real and simulated anomalies in the considered data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张仁斌完成签到,获得积分10
刚刚
bkagyin应助哼哼采纳,获得10
刚刚
刚刚
megumi完成签到 ,获得积分10
1秒前
Hello应助现代的慕青采纳,获得10
1秒前
dasdas发布了新的文献求助60
2秒前
xjp发布了新的文献求助10
2秒前
大胆的人雄完成签到 ,获得积分10
3秒前
高高问夏发布了新的文献求助10
3秒前
幽默沛山完成签到 ,获得积分10
4秒前
JamesPei应助浅是宝贝采纳,获得10
4秒前
小马甲应助o30采纳,获得10
4秒前
4秒前
chen完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
8秒前
Zachary完成签到 ,获得积分10
8秒前
10秒前
10秒前
11秒前
尊敬的丹烟完成签到,获得积分20
11秒前
o30完成签到,获得积分10
11秒前
11秒前
11秒前
哼哼发布了新的文献求助10
12秒前
12秒前
yyds完成签到,获得积分20
14秒前
脑洞疼应助xjp采纳,获得10
14秒前
14秒前
ZhouYW应助李荣航采纳,获得10
14秒前
Akim应助超家族采纳,获得10
14秒前
o30发布了新的文献求助10
16秒前
polarisblue发布了新的文献求助10
17秒前
18秒前
18秒前
20秒前
21秒前
冉旭关注了科研通微信公众号
21秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351587
关于积分的说明 10354846
捐赠科研通 3067401
什么是DOI,文献DOI怎么找? 1684517
邀请新用户注册赠送积分活动 809780
科研通“疑难数据库(出版商)”最低求助积分说明 765635