Deep learning artificial intelligence framework for multiclass coronary artery disease prediction using combination of conventional risk factors, carotid ultrasound, and intraplaque neovascularization

医学 内科学 心脏病学 血压 冠状动脉疾病 超声波 人工智能 放射科 机器学习 计算机科学
作者
Amer M. Johri,Krishna V. Singh,Laura E. Mantella,Luca Saba,Aditya Sharma,John R. Laird,Kumar Utkarsh,Inder M. Singh,Sunit Kumar Gupta,Manudeep S. Kalra,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:150: 106018-106018 被引量:43
标识
DOI:10.1016/j.compbiomed.2022.106018
摘要

Cardiovascular disease (CVD) is a major healthcare challenge and therefore early risk assessment is vital. Previous assessment techniques use either "conventional CVD risk calculators (CCVRC)" or machine learning (ML) paradigms. These techniques are ad-hoc, unreliable, not fully automated, and have variabilities. We, therefore, introduce AtheroEdge-MCDLAI (AE3.0DL) windows-based platform using multiclass Deep Learning (DL) system.Data was collected on 500 patients having both carotid ultrasound and corresponding coronary angiography scores (CAS), measured as stenosis in coronary arteries and considered as the gold standard. A total of 39 covariates were used, clubbed into three clusters, namely (i) Office-based: age, gender, body mass index, smoker, hypertension, systolic blood pressure, and diastolic blood pressure; (ii) Laboratory-based: Hyperlipidemia, hemoglobin A1c, and estimated glomerular filtration rate; and (iii) Carotid ultrasound image phenotypes: maximum plaque height, total plaque area, and intra-plaque neovascularization. Baseline characteristics for four classes (target labels) having significant (p < 0.0001) values were calculated using Chi-square and ANOVA. For handling the cohort's imbalance in the risk classes, AE3.0DL used the synthetic minority over-sampling technique (SMOTE). AE3.0DL used Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) DL models and the performance (accuracy and area-under-the-curve) was computed using 10-fold cross-validation (90% training, 10% testing) frameworks. AE3.0DL was validated and benchmarked.The AE3.0DL using RNN and LSTM showed an accuracy and AUC (p < 0.0001) pairs as (95.00% and 0.98), and (95.34% and 0.99), respectively, and showed an improvement of 32.93% and 9.94% against CCVRC and ML, respectively. AE3.0DL runs in <1 s.DL algorithms are a powerful paradigm for coronary artery disease (CAD) risk prediction and CVD risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yang发布了新的文献求助10
1秒前
好久不见完成签到,获得积分10
1秒前
眼睛大盼兰完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
洛城l发布了新的文献求助10
3秒前
4秒前
游唐完成签到,获得积分10
5秒前
gaozengxiang完成签到,获得积分10
6秒前
CharlieYue完成签到,获得积分20
8秒前
8秒前
小马甲应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
ilihe应助科研通管家采纳,获得10
10秒前
yznfly应助科研通管家采纳,获得50
10秒前
Stella应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
AD应助科研通管家采纳,获得10
10秒前
ilihe应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
12秒前
Orange应助wyxs采纳,获得10
12秒前
橘子完成签到,获得积分10
12秒前
紧张的斩完成签到 ,获得积分10
13秒前
zzzxiangyi完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600866
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843743
捐赠科研通 4678603
什么是DOI,文献DOI怎么找? 2539007
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241