EmoMusicTV: Emotion-Conditioned Symbolic Music Generation With Hierarchical Transformer VAE

计算机科学 自编码 人工智能 语音识别 Chord(对等) 自然语言处理 深度学习 分布式计算
作者
Shulei Ji,Xinyu Yang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 1076-1088 被引量:18
标识
DOI:10.1109/tmm.2023.3276177
摘要

Emotion is one of the most crucial attributes of music. However, due to the scarcity of emotional music datasets, emotion-conditioned symbolic music generation using deep learning techniques has not been investigated in depth. In particular, no study explores conditional music generation with the guidance of emotion, and few studies adopt time-varying emotional conditions. To address these issues, first, we endow three public lead sheet datasets with fine-grained emotions by automatically computing the valence labels from the chord progressions. Second, we propose a novel and effective encoder-decoder architecture named EmoMusicTV to explore the impact of emotional conditions on multiple music generation tasks and to capture the rich variability of musical sequences. EmoMusicTV is a transformer-based variational autoencoder (VAE) that contains a hierarchical latent variable structure to model holistic properties of the music segments and short-term variations within bars. The piece-level and bar-level emotional labels are embedded in their corresponding latent spaces to guide music generation. Third, we pretrain EmoMusicTV with the lead sheet continuation task to further improve its performance on conditional melody or harmony generation. Experimental results demonstrate that EmoMusicTV outperforms previous methods on three tasks, i.e., melody harmonization, melody generation given harmony, and lead sheet generation. Ablation studies verify the significant roles of emotional conditions and hierarchical latent variable structure on conditional music generation. Human listening shows that the lead sheets generated by EmoMusicTV are closer to the ground truth (GT) and perform slightly worse than the GT in conveying emotional polarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
利奈唑胺完成签到,获得积分10
刚刚
WLX001完成签到 ,获得积分10
刚刚
Mike发布了新的文献求助10
刚刚
orixero应助QQ不需要昵称采纳,获得10
刚刚
lin发布了新的文献求助20
1秒前
4秒前
4秒前
4秒前
chen完成签到,获得积分10
5秒前
慢悠的蜗牛完成签到 ,获得积分10
6秒前
CCrain应助ajun采纳,获得10
7秒前
7秒前
Aurora发布了新的文献求助10
8秒前
sifvld完成签到,获得积分10
9秒前
彭于晏应助樱木没有花道采纳,获得10
9秒前
ppp发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
阔达源智完成签到,获得积分10
10秒前
10秒前
Orange应助iota采纳,获得10
10秒前
我是老大应助称心誉采纳,获得10
11秒前
LaTeXer应助每天100次采纳,获得200
12秒前
12秒前
12秒前
12秒前
13秒前
14秒前
14秒前
刘一安发布了新的文献求助10
14秒前
翁柔凤完成签到,获得积分10
16秒前
sui发布了新的文献求助10
16秒前
zhangzhang发布了新的文献求助10
17秒前
Jasper应助隐形的鸡翅采纳,获得10
17秒前
阔达源智发布了新的文献求助10
18秒前
坚定凝安发布了新的文献求助10
18秒前
开心大雁发布了新的文献求助10
18秒前
乐观的小松鼠完成签到,获得积分10
18秒前
爆米花应助懒羊羊采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662422
求助须知:如何正确求助?哪些是违规求助? 4842550
关于积分的说明 15099779
捐赠科研通 4820888
什么是DOI,文献DOI怎么找? 2580339
邀请新用户注册赠送积分活动 1534379
关于科研通互助平台的介绍 1492999