反应扩散系统
扩散
人口
数学
栖息地
统计物理学
人口模型
地理
统计
生物系统
计算机科学
应用数学
计量经济学
经济地理学
生态学
数学分析
物理
生物
人口学
社会学
热力学
作者
Lixin Tian,Yanfeng Li,Ruizhi Yang
标识
DOI:10.1142/s1793524524500384
摘要
In this paper, a population system with cross-diffusion and habitat complexity is selected as study object. We investigate that how cross-diffusion and habitat complexity destabilize the otherwise stable periodic solutions of the ODEs to generate the new abundant spatial Turing patterns. By utilizing the local Hopf bifurcation theorem and perturbation theory, we establish a formula to determine the Turing instability of periodic solutions of the population system with cross-diffusion and habitat complexity. Finally, numerical simulations are performed to verify theoretical analysis, simultaneously, we verify the formation process of spatial Turing patterns when the cross-diffusion coefficients and habitat complexity change.
科研通智能强力驱动
Strongly Powered by AbleSci AI