Recognition of Indoor Scenes Using 3-D Scene Graphs

计算机科学 人工智能 计算机视觉 遥感 模式识别(心理学) 地质学
作者
Han Yue,Ville Lehtola,Hangbin Wu,George Vosselman,Jincheng Li,Chun Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:7
标识
DOI:10.1109/tgrs.2024.3387556
摘要

Scene recognition is a fundamental task in 3D scene understanding. It answers the question 'What is this place?'. In an indoor environment, the answer can be an office, kitchen, lobby, and so on. As the number of point clouds increases, using embedded point information in scene recognition becomes computationally heavy to process. To achieve computational efficiency and accurate classification, our idea is to use indoor scene graph that represents the 3D spatial structures via object instances. The proposed method comprises two parts, namely, (i) construction of indoor scene graphs leveraging object instances and their spatial relationships and (ii) classification of these graphs using a deep learning network. Specifically, each indoor scene is represented by a graph, where each node represents either a structural element (like a ceiling, a wall, or a floor) or a piece of furniture (like a chair or a table) and each edge encodes the spatial relationship between these elements. Then these graphs are used as input for our proposed graph classification network to learn different scene representations. The public indoor dataset, ScanNet v2, with 625.53 million points is selected to test our method. Experiments yield good results with up to 88.00% accuracy and 82.30% F1-score in the fixed validation dataset, and 90.46% accuracy and 81.45% F1-score in 10-fold cross validation method. Moreover, if some indoor objects can't be successfully identified, the scene classification accuracy depends sub-linearly on the rate of missing objects in the scene.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liaoyan完成签到,获得积分10
刚刚
gaigaiguo@163发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
孙光明发布了新的文献求助10
2秒前
2秒前
3秒前
科目三应助健壮问兰采纳,获得10
3秒前
4秒前
风之子发布了新的文献求助10
4秒前
FashionBoy应助勤恳曼卉采纳,获得10
5秒前
5秒前
852应助传统的小伙采纳,获得10
6秒前
6秒前
6秒前
Cm666完成签到,获得积分10
6秒前
无极微光应助陈飞达采纳,获得20
6秒前
lsong完成签到,获得积分10
7秒前
CipherSage应助义气凝阳采纳,获得10
7秒前
8秒前
努力学习的阿文完成签到 ,获得积分10
8秒前
10秒前
11秒前
福1发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
bingbing完成签到,获得积分10
13秒前
在水一方应助黎盛中采纳,获得10
14秒前
14秒前
ww417发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
Jasper应助早点睡觉丶采纳,获得10
15秒前
勤恳曼卉发布了新的文献求助10
16秒前
科研通AI6.1应助农艳宁采纳,获得10
16秒前
16秒前
健壮问兰发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762094
求助须知:如何正确求助?哪些是违规求助? 5533938
关于积分的说明 15401949
捐赠科研通 4898361
什么是DOI,文献DOI怎么找? 2634825
邀请新用户注册赠送积分活动 1582986
关于科研通互助平台的介绍 1538167