清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel adaptive deep transfer learning method towards thermal error modeling of electric spindles under variable conditions

变量(数学) 光学(聚焦) 学习迁移 核(代数) 深度学习 计算机科学 领域(数学分析) 机械加工 算法 人工智能 工程类 模式识别(心理学) 数学 物理 机械工程 数学分析 组合数学 光学
作者
Xiaojuan Ma,Jiewu Leng,Zhuyun Chen,Bo Li,Ding Zhang,Weihua Li,Qiang Liu
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:74: 112-128 被引量:13
标识
DOI:10.1016/j.jmsy.2024.02.012
摘要

Thermal error modeling (TEM) plays a vital role in maintaining the machining accuracy of electric spindles. Recently, deep learning (DL) techniques have obtained promising achievements in this area. However, DL techniques have certain limitations. The data acquired from variable working conditions present large distribution discrepancies, the DL-based model established on one working condition fails to obtain satisfactory prediction accuracy in another working condition. Moreover, existing studies focus solely on using temperature features to build prediction models, neglecting the full use of multi-sensory information. To address these issues, this paper proposes a novel adaptive deep transfer learning method towards TEM of electric spindles, which takes full advantage of the temperature, current, and power sensory information. Firstly, finite element simulation is employed to analyze the thermal characteristics of the electric spindle and determine the locations for temperature measurement points. Then, the convolutional long short-term memory network (C-LSTMN) is constructed, where the spatial features from multi-sensory information between inputs and prediction patterns are captured by convolutional layers, these features are further processed by long short-term memory network (LSTMN) to extract temporal features. Subsequently, the multi-kernel joint maximum mean discrepancy (MK-JMMD) measure is developed to minimize the distribution discrepancies between the source and target domains, thus the prediction model initially established on the source domain can be adaptive to effectively predict on the target domain. Finally, with unavailable thermal error data in the target domain, the proposed method is validated through 12 transfer tasks using datasets from four working conditions with other comparison methods. The results demonstrate that the proposed method overcomes the challenges of unavailable labeled thermal error samples and outperforms advanced methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糯米糍发布了新的文献求助10
3秒前
SYLH应助oleskarabach采纳,获得10
4秒前
yingying完成签到,获得积分20
5秒前
8秒前
小蘑菇应助古月采纳,获得10
27秒前
领导范儿应助Mr采纳,获得10
37秒前
naczx完成签到,获得积分0
37秒前
45秒前
Mr发布了新的文献求助10
49秒前
51秒前
古月发布了新的文献求助10
56秒前
量子星尘发布了新的文献求助10
1分钟前
下午好完成签到 ,获得积分10
1分钟前
003完成签到,获得积分10
1分钟前
zzhui完成签到,获得积分10
1分钟前
1分钟前
黑球发布了新的文献求助10
1分钟前
xiaozou55完成签到 ,获得积分10
1分钟前
1分钟前
黑球完成签到,获得积分10
1分钟前
1分钟前
不是山谷完成签到,获得积分10
1分钟前
1分钟前
2分钟前
逺山長发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
朱佳宁完成签到 ,获得积分10
3分钟前
3分钟前
重要的炳完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
方白秋完成签到,获得积分10
4分钟前
zpc猪猪完成签到,获得积分10
4分钟前
帅气的宽完成签到 ,获得积分10
4分钟前
郭义敏完成签到,获得积分0
4分钟前
忐忑的烤鸡完成签到,获得积分10
5分钟前
斯文的访烟完成签到,获得积分10
5分钟前
5分钟前
沉静沛芹发布了新的文献求助30
5分钟前
852应助科研通管家采纳,获得10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953501
求助须知:如何正确求助?哪些是违规求助? 3498943
关于积分的说明 11093377
捐赠科研通 3229545
什么是DOI,文献DOI怎么找? 1785524
邀请新用户注册赠送积分活动 869430
科研通“疑难数据库(出版商)”最低求助积分说明 801462