A novel adaptive deep transfer learning method towards thermal error modeling of electric spindles under variable conditions

变量(数学) 光学(聚焦) 学习迁移 核(代数) 深度学习 计算机科学 领域(数学分析) 机械加工 算法 人工智能 工程类 模式识别(心理学) 数学 物理 机械工程 数学分析 光学 组合数学
作者
Xiaojuan Ma,Jiewu Leng,Zhuyun Chen,Bo Li,Ding Zhang,Weihua Li,Qiang Liu
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:74: 112-128 被引量:13
标识
DOI:10.1016/j.jmsy.2024.02.012
摘要

Thermal error modeling (TEM) plays a vital role in maintaining the machining accuracy of electric spindles. Recently, deep learning (DL) techniques have obtained promising achievements in this area. However, DL techniques have certain limitations. The data acquired from variable working conditions present large distribution discrepancies, the DL-based model established on one working condition fails to obtain satisfactory prediction accuracy in another working condition. Moreover, existing studies focus solely on using temperature features to build prediction models, neglecting the full use of multi-sensory information. To address these issues, this paper proposes a novel adaptive deep transfer learning method towards TEM of electric spindles, which takes full advantage of the temperature, current, and power sensory information. Firstly, finite element simulation is employed to analyze the thermal characteristics of the electric spindle and determine the locations for temperature measurement points. Then, the convolutional long short-term memory network (C-LSTMN) is constructed, where the spatial features from multi-sensory information between inputs and prediction patterns are captured by convolutional layers, these features are further processed by long short-term memory network (LSTMN) to extract temporal features. Subsequently, the multi-kernel joint maximum mean discrepancy (MK-JMMD) measure is developed to minimize the distribution discrepancies between the source and target domains, thus the prediction model initially established on the source domain can be adaptive to effectively predict on the target domain. Finally, with unavailable thermal error data in the target domain, the proposed method is validated through 12 transfer tasks using datasets from four working conditions with other comparison methods. The results demonstrate that the proposed method overcomes the challenges of unavailable labeled thermal error samples and outperforms advanced methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Vera发布了新的文献求助10
2秒前
2秒前
2秒前
晨月发布了新的文献求助10
2秒前
3秒前
3秒前
汉堡包应助黎明采纳,获得10
3秒前
3秒前
4秒前
4秒前
orixero应助Niko采纳,获得30
4秒前
橘阮完成签到,获得积分10
4秒前
简择两发布了新的文献求助10
4秒前
orixero应助JJ采纳,获得10
5秒前
小何发布了新的文献求助10
5秒前
zlu发布了新的文献求助10
5秒前
qingmoheng应助τ涛采纳,获得10
6秒前
6秒前
浓缩蓝鲸发布了新的文献求助10
6秒前
Yik发布了新的文献求助10
7秒前
KM比比发布了新的文献求助10
7秒前
7秒前
嘻嘻哈哈应助齐静春采纳,获得10
7秒前
郁金香发布了新的文献求助10
7秒前
爆米花应助彩色的台灯采纳,获得10
7秒前
时来运转发布了新的文献求助10
8秒前
peiyy完成签到,获得积分10
8秒前
WH发布了新的文献求助10
8秒前
二柱子发布了新的文献求助10
9秒前
白鹤卧雪完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
脑洞疼应助陈某人采纳,获得10
9秒前
丸子发布了新的文献求助20
10秒前
清柠完成签到,获得积分20
10秒前
Jackey完成签到,获得积分10
10秒前
俊逸雅柏发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473258
求助须知:如何正确求助?哪些是违规求助? 4575461
关于积分的说明 14352959
捐赠科研通 4503014
什么是DOI,文献DOI怎么找? 2467404
邀请新用户注册赠送积分活动 1455315
关于科研通互助平台的介绍 1429322