Identifying the path choice of digital economy to crack the “resource curse" in China from the perspective of configuration

资源诅咒 资源(消歧) 数字经济 诅咒 相互依存 经济 循环经济 共享经济 产业组织 经济 环境经济学 经济体制 业务 生态学 计算机科学 政治学 自然资源 社会学 生物 万维网 法学 计算机网络 人类学
作者
Yanchao Feng,Yue Gao,Xiqiang Xia,Ke Shi,Ci Zhang,Le Yang,Liwei Yang,Javier Cifuentes‐Faura
出处
期刊:Resources Policy [Elsevier]
卷期号:91: 104912-104912 被引量:30
标识
DOI:10.1016/j.resourpol.2024.104912
摘要

Against the backdrop of the "green economy", economic growth and environmental protection are perceived as interdependent and inseparable entities. The digital economy, as a novel economic paradigm, plays a crucial role in unraveling the "resource curse" of excessive resource consumption under traditional development models. This study employs the fuzzy set qualitative comparative analysis (fsQCA) method investigate the configuration effects of technical, organizational, and environmental factors on addressing the "resource curse" across 30 provinces (autonomous regions, municipalities) in China. It also examines the interactive matching relationships among different factors and the heterogeneity of the digital economy in mitigating the "resource curse". It is significantly established that breaking the "resource curse" does not have a single necessary condition, and the environmental factors emerge as pivotal elements for each province in this process. Considering the role of digital economy, there are four distinct configuration paths for the digital economy to mitigate the "resource curse", each exhibiting significant regional and industrial dependence heterogeneity. This research approach integrates the digital economy with traditional resource economies, aiming to explore new development patterns and theoretical frameworks. It also seeks to provide policymakers with practical strategies to guide economic and social transition towards a modernized path characterized by green, circular, and efficient development with the aid of the digital tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suxiang应助菲菲采纳,获得40
刚刚
UD发布了新的文献求助30
刚刚
CipherSage应助凌露采纳,获得10
刚刚
980238540完成签到,获得积分20
1秒前
1秒前
CodeCraft应助俊秀的芫采纳,获得10
1秒前
hongyi66完成签到,获得积分10
2秒前
ddd发布了新的文献求助10
2秒前
脑洞疼应助专注的傲菡采纳,获得10
2秒前
yizongting完成签到,获得积分10
2秒前
JamesPei应助Tsuki采纳,获得10
2秒前
3秒前
3秒前
花照林发布了新的文献求助10
3秒前
3秒前
4秒前
隐形曼青应助清新的秋白采纳,获得10
4秒前
幽默尔蓝发布了新的文献求助10
4秒前
小树杈发布了新的文献求助10
5秒前
科研小吴发布了新的文献求助10
5秒前
完美世界应助xtutang采纳,获得10
5秒前
万安安发布了新的文献求助10
5秒前
香橼琥珀关注了科研通微信公众号
5秒前
爱骑车的CH完成签到 ,获得积分10
6秒前
shezhinicheng完成签到,获得积分10
6秒前
吴子优完成签到,获得积分10
6秒前
6秒前
塔麻头完成签到,获得积分10
7秒前
华仔应助JY采纳,获得10
7秒前
lingck发布了新的文献求助10
8秒前
有人应助kirito1211采纳,获得10
8秒前
风中惜寒发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
风趣甜瓜完成签到,获得积分20
10秒前
10秒前
10秒前
pifu发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473665
求助须知:如何正确求助?哪些是违规求助? 4575821
关于积分的说明 14354677
捐赠科研通 4503392
什么是DOI,文献DOI怎么找? 2467604
邀请新用户注册赠送积分活动 1455446
关于科研通互助平台的介绍 1429459