Automated guided vehicle dispatching and routing integration via digital twin with deep reinforcement learning

强化学习 拖延 计算机科学 马尔可夫决策过程 布线(电子设计自动化) 能源消耗 过程(计算) 分布式计算 工业工程 实时计算 工程类 人工智能 作业车间调度 马尔可夫过程 嵌入式系统 统计 数学 电气工程 操作系统
作者
Lixiang Zhang,Chen Yang,Yan Yan,Ze Cai,Yaoguang Hu
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:72: 492-503 被引量:39
标识
DOI:10.1016/j.jmsy.2023.12.008
摘要

The manufacturing industry has witnessed a significant shift towards high flexibility and adaptability, driven by personalized demands. However, automated guided vehicle (AGV) dispatching optimization is still challenging when considering AGV routing with the spatial-temporal and kinematics constraints in intelligent production logistics systems, limiting the evolving industry applications. Against this backdrop, this paper presents a digital twin (DT)-enhanced deep reinforcement learning-based optimization framework to integrate AGV dispatching and routing at both horizontal and vertical levels. First, the proposed framework leverages a digital twin model of the shop floor to provide a simulation environment that closely mimics the actual manufacturing process, enabling the AGV dispatching agent to be trained in a realistic setting, thus reducing the risk of finding unrealistic solutions under specific shop-floor settings and preventing time-consuming trial-and-error processes. Then, the AGV dispatching with the routing problem is modeled as a Markov Decision Process to optimize tardiness and energy consumption. An improved dueling double deep Q network algorithm with count-based exploration is developed to learn a better-dispatching policy by interacting with the high-fidelity DT model that integrates a static path planning agent using A* and a dynamic collision avoidance agent using a deep deterministic policy gradient to prevent the congestion and deadlock. Experimental results show that our method outperforms four state-of-the-art methods with shorter tardiness, lower energy consumption, and better stability. The proposed method provides significant potential to utilize the digital twin and reinforcement learning in the decision-making and optimization of manufacturing processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小余同学发布了新的文献求助10
2秒前
lu完成签到,获得积分20
3秒前
3秒前
烟花应助SihanYin采纳,获得10
3秒前
3秒前
3秒前
4秒前
嘻哈小天才完成签到 ,获得积分10
5秒前
5秒前
xin完成签到,获得积分10
5秒前
6秒前
6秒前
星辰大海应助香辣鸡腿堡采纳,获得10
6秒前
慕青应助小迪采纳,获得10
6秒前
果酱的奥特曼完成签到,获得积分10
6秒前
吭哧吭哧完成签到,获得积分10
7秒前
研友_nv2krn完成签到 ,获得积分10
7秒前
温婉的以松完成签到,获得积分10
7秒前
7秒前
fighting发布了新的文献求助10
7秒前
8秒前
青梧发布了新的文献求助10
8秒前
学术菜鸟发布了新的文献求助10
9秒前
mmyhn发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
xr发布了新的文献求助10
11秒前
12秒前
内向秋烟发布了新的文献求助10
12秒前
CipherSage应助孤独的无血采纳,获得30
12秒前
小蘑菇应助乐观的海采纳,获得10
12秒前
YUE发布了新的文献求助10
12秒前
enen发布了新的文献求助10
12秒前
科目三应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
靓丽代柔应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286904
求助须知:如何正确求助?哪些是违规求助? 4439441
关于积分的说明 13821830
捐赠科研通 4321463
什么是DOI,文献DOI怎么找? 2371969
邀请新用户注册赠送积分活动 1367463
关于科研通互助平台的介绍 1330923