已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DTC: Deep Tracking Control

稳健性(进化) 计算机科学 人工智能 规划师 地形 强化学习 机器学习 轨迹优化 运动规划 机器人 最优控制 数学优化 数学 生物 生态学 基因 生物化学 化学
作者
Fabian Jenelten,Junjian He,Farbod Farshidian,Marco Hutter
出处
期刊:Science robotics [American Association for the Advancement of Science]
卷期号:9 (86) 被引量:1
标识
DOI:10.1126/scirobotics.adh5401
摘要

Legged locomotion is a complex control problem that requires both accuracy and robustness to cope with real-world challenges. Legged systems have traditionally been controlled using trajectory optimization with inverse dynamics. Such hierarchical model-based methods are appealing because of intuitive cost function tuning, accurate planning, generalization, and, most importantly, the insightful understanding gained from more than one decade of extensive research. However, model mismatch and violation of assumptions are common sources of faulty operation. Simulation-based reinforcement learning, on the other hand, results in locomotion policies with unprecedented robustness and recovery skills. Yet, all learning algorithms struggle with sparse rewards emerging from environments where valid footholds are rare, such as gaps or stepping stones. In this work, we propose a hybrid control architecture that combines the advantages of both worlds to simultaneously achieve greater robustness, foot-placement accuracy, and terrain generalization. Our approach uses a model-based planner to roll out a reference motion during training. A deep neural network policy is trained in simulation, aiming to track the optimized footholds. We evaluated the accuracy of our locomotion pipeline on sparse terrains, where pure data-driven methods are prone to fail. Furthermore, we demonstrate superior robustness in the presence of slippery or deformable ground when compared with model-based counterparts. Last, we show that our proposed tracking controller generalizes across different trajectory optimization methods not seen during training. In conclusion, our work unites the predictive capabilities and optimality guarantees of online planning with the inherent robustness attributed to offline learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hins完成签到 ,获得积分10
2秒前
赘婿应助小老板采纳,获得10
6秒前
9秒前
爆炸boom完成签到 ,获得积分10
10秒前
10秒前
阳光下午茶完成签到 ,获得积分10
11秒前
坚定碧完成签到 ,获得积分10
13秒前
13秒前
爆米花应助朴实初夏采纳,获得10
15秒前
WilliamJarvis完成签到 ,获得积分10
15秒前
崇林同学完成签到 ,获得积分10
17秒前
晶晶发布了新的文献求助10
18秒前
CC完成签到 ,获得积分10
18秒前
甜甜觅双发布了新的文献求助10
21秒前
平常万言完成签到 ,获得积分10
21秒前
23秒前
典雅问寒完成签到,获得积分0
23秒前
24秒前
研友_Z6W9B8发布了新的文献求助10
24秒前
25秒前
陈y完成签到 ,获得积分10
25秒前
朴实初夏发布了新的文献求助10
26秒前
T_MC郭发布了新的文献求助10
28秒前
嗨害害发布了新的文献求助10
29秒前
无畏完成签到 ,获得积分10
30秒前
往前冲完成签到,获得积分20
30秒前
科研通AI5应助研友_ng9E28采纳,获得10
31秒前
33秒前
汉德萌多林完成签到,获得积分10
33秒前
wang5945完成签到 ,获得积分10
35秒前
Truman发布了新的文献求助10
38秒前
酷波er应助嗨害害采纳,获得10
40秒前
不能随便完成签到,获得积分10
40秒前
xxx完成签到,获得积分10
41秒前
俏皮的老城完成签到 ,获得积分10
41秒前
不会科研的混子完成签到 ,获得积分10
41秒前
yelide完成签到,获得积分10
42秒前
土豆荷包蛋完成签到,获得积分10
42秒前
斯文败类应助含糊的从云采纳,获得10
45秒前
爆米花应助尹萧采纳,获得10
45秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792392
求助须知:如何正确求助?哪些是违规求助? 3336653
关于积分的说明 10281744
捐赠科研通 3053408
什么是DOI,文献DOI怎么找? 1675585
邀请新用户注册赠送积分活动 803557
科研通“疑难数据库(出版商)”最低求助积分说明 761457