Dust deposition on the photovoltaic panel: A comprehensive survey on mechanisms, effects, mathematical modeling, cleaning methods, and monitoring systems

光伏系统 计算机科学 工艺工程 环境科学 自动汇总 汽车工程 工程类 人工智能 电气工程
作者
Letao Wan,Liqian Zhao,Wensheng Xu,Feihong Guo,Xiaoxiang Jiang
出处
期刊:Solar Energy [Elsevier]
卷期号:268: 112300-112300 被引量:79
标识
DOI:10.1016/j.solener.2023.112300
摘要

Photovoltaic (PV) power generation has become one of the key technologies to reach energy-saving and carbon reduction targets. However, dust accumulation will significantly affect the electrical, optical, and thermal performance of PV panels and cause some energy loss. For this reason, appropriate cleaning measures are needed to restore their performance and power output. Many researchers have reviewed the effects of dust on the performance of PV panels and cleaning methods, but their coverage is narrow and lacks more in-depth summarization, comparison, and critique of key quantitative results. Using the Web of Science database as the main search source, this paper provides a comprehensive overview of research results on the mechanisms and influencing factors of dust deposition on photovoltaic panels, photovoltaic performance loss and prediction models, cleaning methods, and dirt monitoring systems. The results found that the module power output degradation due to dust deposition is more serious in different regions, ranging from 7% to 98.13%. The automatic cleaning robot, as an emerging intelligent technology, has a better cleaning effect and can increase PV efficiency by up to 49.53%. This paper also proposes a comprehensive strategy for dust prevention on PV panels that integrates "real-time monitoring of dust accumulation - model prediction of losses - and optimization of cleaning solutions", emphasises the development of new intelligent cleaning methods represented by robots and drone cleaning, and suggests promoting the application of AI in the monitoring and cleaning of PV modules to accelerate the process of achieving carbon neutrality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
evo发布了新的文献求助10
3秒前
本质长青完成签到,获得积分10
4秒前
5秒前
无异常发布了新的文献求助10
9秒前
10秒前
10秒前
苒苒发布了新的文献求助10
13秒前
灵长类发布了新的文献求助10
16秒前
LJX完成签到,获得积分10
16秒前
Hello应助tiantianquan采纳,获得10
19秒前
酷波er应助灵长类采纳,获得10
21秒前
XM完成签到,获得积分10
24秒前
26秒前
科研通AI6.1应助XM采纳,获得10
28秒前
可靠的毛衣完成签到 ,获得积分10
29秒前
小韦完成签到,获得积分20
30秒前
彭于晏应助GSD采纳,获得10
31秒前
31秒前
Orange应助SSY采纳,获得10
36秒前
高振航发布了新的文献求助10
39秒前
42秒前
43秒前
小潘完成签到,获得积分10
45秒前
hhh完成签到 ,获得积分10
46秒前
GSD发布了新的文献求助10
48秒前
科研通AI6.2应助汝桢采纳,获得10
49秒前
高振航完成签到,获得积分10
52秒前
55秒前
鹰扬在九天完成签到,获得积分10
55秒前
55秒前
1分钟前
Bowman完成签到 ,获得积分10
1分钟前
向沛山发布了新的文献求助10
1分钟前
1分钟前
深情安青应助未夕晴采纳,获得10
1分钟前
万能图书馆应助GSD采纳,获得10
1分钟前
www268完成签到 ,获得积分10
1分钟前
1分钟前
汝桢发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Separating Singapore from British India 300
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5859930
求助须知:如何正确求助?哪些是违规求助? 6351177
关于积分的说明 15641320
捐赠科研通 4973735
什么是DOI,文献DOI怎么找? 2682852
邀请新用户注册赠送积分活动 1626473
关于科研通互助平台的介绍 1583706