结晶
聚酰胺
尼龙6
结晶学
酰胺
材料科学
高分子化学
成核
差示扫描量热法
聚合物
化学
热力学
有机化学
复合材料
物理
作者
Matteo Arioli,Lourdes Franco,Jordi Puiggalı́
标识
DOI:10.1016/j.tca.2024.179721
摘要
Aliphatic polyamides (nylons) show a remarkable variability in terms of crystallographic structures, polymorphic transitions and crystal morphology despite all polymers of this family have a simple constitution that is based on amide groups and polymethylene segments. Nylons derived from diamines and dicarboxylic acids having different parity (e.g., even or odd) have peculiar characteristics due to the difficulty of establishing an optimal hydrogen-bonding geometry when molecular chains adopt a typical all trans conformation. In this work, two isomeric odd-even (nylon 7,10) and even-odd (nylon 10,7) polyamides with the same methylene/amide ratio have been studied. Specifically, crystallization kinetics have been evaluated from calorimetric data, while thermal degradation mechanisms from thermogravimetric analysis. Classical methods (e.g., Avrami) together with isoconversional analyses have been considered for crystallization studies, being found significant differences between both nylons in terms of nucleation and activation energies. The isoconversional analyses of the non-isothermal crystallization allowed to determine the temperature dependence of both the crystal growth and the overall crystallization rate that points out the slower crystallization process of nylon 10,7. Isoconversional methods (integral and differential) were applied to evaluate thermal degradation. The mechanism was similar for both nylons (e.g., A3/2 and A1.8 for nylons 7,10 and 10,7, respectively), although a remarkable difference was determined for the corresponding activation energies (175 and 210 kJ/mol for nylons 7,10 and 10,7, respectively).
科研通智能强力驱动
Strongly Powered by AbleSci AI