Landslide susceptibility mapping (LSM) based on different boosting and hyperparameter optimization algorithms: A case of Wanzhou District, China

超参数 算法 Boosting(机器学习) 粒子群优化 机器学习 计算机科学 地理空间分析 山崩 人工智能 数学 数据挖掘 地质学 遥感 岩土工程
作者
Deliang Sun,Jing Wang,Haijia Wen,Yuekai Ding,Changlin Mi
出处
期刊:Journal of rock mechanics and geotechnical engineering [Elsevier BV]
卷期号:16 (8): 3221-3232 被引量:8
标识
DOI:10.1016/j.jrmge.2023.09.037
摘要

Boosting algorithms have been widely utilized in the development of landslide susceptibility mapping (LSM) studies. However, these algorithms possess distinct computational strategies and hyperparameters, making it challenging to propose an ideal LSM model. To investigate the impact of different boosting algorithms and hyperparameter optimization algorithms on LSM, this study constructed a geospatial database comprising 12 conditioning factors, such as elevation, stratum, and annual average rainfall. The XGBoost (XGB), LightGBM (LGBM), and CatBoost (CB) algorithms were employed to construct the LSM model. Furthermore, the Bayesian optimization (BO), particle swarm optimization (PSO), and Hyperband optimization (HO) algorithms were applied to optimizing the LSM model. The boosting algorithms exhibited varying performances, with CB demonstrating the highest precision, followed by LGBM, and XGB showing poorer precision. Additionally, the hyperparameter optimization algorithms displayed different performances, with HO outperforming PSO and BO showing poorer performance. The HO-CB model achieved the highest precision, boasting an accuracy of 0.764, an F1-score of 0.777, an area under the curve (AUC) value of 0.837 for the training set, and an AUC value of 0.863 for the test set. The model was interpreted using SHapley Additive exPlanations (SHAP), revealing that slope, curvature, topographic wetness index (TWI), degree of relief, and elevation significantly influenced landslides in the study area. This study offers a scientific reference for LSM and disaster prevention research. This study examines the utilization of various boosting algorithms and hyperparameter optimization algorithms in Wanzhou District. It proposes the HO-CB-SHAP framework as an effective approach to accurately forecast landslide disasters and interpret LSM models. However, limitations exist concerning the generalizability of the model and the data processing, which require further exploration in subsequent studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助sdafcaewsf采纳,获得10
刚刚
科目三应助郭老师采纳,获得10
刚刚
wangli发布了新的文献求助10
4秒前
827584450应助LT采纳,获得10
6秒前
星辰大海应助coli采纳,获得10
6秒前
Orange应助喜悦采纳,获得10
6秒前
慕青应助Bonnienuit采纳,获得10
8秒前
8秒前
老鼠爱吃fish完成签到,获得积分10
9秒前
橘子完成签到,获得积分10
10秒前
vision发布了新的文献求助10
11秒前
王婧萱萱萱完成签到 ,获得积分10
12秒前
宁静致远发布了新的文献求助10
13秒前
13秒前
pluto应助孙俪采纳,获得10
14秒前
kingcoming发布了新的文献求助10
14秒前
17秒前
18秒前
Wizard发布了新的文献求助10
19秒前
20秒前
20秒前
友好南珍完成签到,获得积分20
21秒前
宁静致远完成签到,获得积分10
21秒前
21秒前
coli发布了新的文献求助10
21秒前
称心不尤完成签到 ,获得积分10
22秒前
22秒前
23秒前
善良的剑通应助wangli采纳,获得10
23秒前
友好南珍发布了新的文献求助10
24秒前
Hey发布了新的文献求助20
24秒前
郭老师发布了新的文献求助10
25秒前
terry完成签到 ,获得积分10
25秒前
咻咻咻发布了新的文献求助10
25秒前
忧虑的靖巧完成签到 ,获得积分10
26秒前
jerry完成签到,获得积分10
32秒前
33秒前
凡人完成签到 ,获得积分10
34秒前
顾矜应助端庄的碧萱采纳,获得10
34秒前
沫柠完成签到 ,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780525
求助须知:如何正确求助?哪些是违规求助? 3326007
关于积分的说明 10225002
捐赠科研通 3041057
什么是DOI,文献DOI怎么找? 1669166
邀请新用户注册赠送积分活动 799019
科研通“疑难数据库(出版商)”最低求助积分说明 758667