化学
等离子体子
拉曼散射
纳米颗粒
纳米孔
多孔性
背景(考古学)
八面体
吸附
粒子(生态学)
纳米技术
金属
纳米结构
散射
拉曼光谱
光电子学
结晶学
光学
材料科学
有机化学
古生物学
地质学
物理
晶体结构
海洋学
生物
作者
Sunwoo Kwon,Myeong Jin Oh,Soohyun Lee,Gihyun Lee,Insub Jung,Moonhyun Oh,Sungho Park
摘要
Here, we report the synthesis of three-dimensional plasmonic nanolenses for strong near-field focusing. The nanolens exhibits a distinctive structural arrangement composed of nanoporous sponge-like networks within their interior. We denote these novel nanoparticles as "Au octahedral nanosponges" (Au Oh NSs). Employing a carefully planned multistep synthetic approach with Au octahedra serving as sacrificial templates, we successfully synthesized Au Oh NSs in solution. The porous domains resembling sponges contributed to enhanced scattering and absorption of incident light within metal ligaments. This optical energy was subsequently transferred to the nanospheres at the vertex, where near-field focusing was maximized. We named this observed enhancement a "lightning-sphere effect". Using single particle-by-particle surface-enhanced Raman scattering (SERS), we optimized the morphological dimensions of the spheres and porous domains to achieve the most effective near-field focusing. In the context of bulk SERS measurements targeting weakly adsorbing analytes (2-chloroethyl phenyl sulfide) in the gas phase, we achieved a low detection limit of 10 ppb. For nonadsorbing species (dimethyl methyl phosphonate), utilization of hybrid SERS substrates consisting of Au Oh NSs and metal-organic frameworks as gas-adsorbing intermediate layers was highly effective for successful SERS detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI