A comparison of two approaches to dynamic prediction: Joint modeling and landmark modeling

地标 计算机科学 接头(建筑物) 领域(数学) 数据挖掘 机器学习 计量经济学 人工智能 数学 工程类 建筑工程 纯数学
作者
Wenhao Li,Liang Li,Brad C. Astor
出处
期刊:Statistics in Medicine [Wiley]
卷期号:42 (13): 2101-2115 被引量:2
标识
DOI:10.1002/sim.9713
摘要

Summary Joint modeling and landmark modeling are two mainstream approaches to dynamic prediction in longitudinal studies, that is, the prediction of a clinical event using longitudinally measured predictor variables available up to the time of prediction. It is an important research question to the methodological research field and also to practical users to understand which approach can produce more accurate prediction. There were few previous studies on this topic, and the majority of results seemed to favor joint modeling. However, these studies were conducted in scenarios where the data were simulated from the joint models, partly due to the widely recognized methodological difficulty on whether there exists a general joint distribution of longitudinal and survival data so that the landmark models, which consists of infinitely many working regression models for survival, hold simultaneously. As a result, the landmark models always worked under misspecification, which caused difficulty in interpreting the comparison. In this paper, we solve this problem by using a novel algorithm to generate longitudinal and survival data that satisfies the working assumptions of the landmark models. This innovation makes it possible for a “fair” comparison of joint modeling and landmark modeling in terms of model specification. Our simulation results demonstrate that the relative performance of these two modeling approaches depends on the data settings and one does not always dominate the other in terms of prediction accuracy. These findings stress the importance of methodological development for both approaches. The related methodology is illustrated with a kidney transplantation dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经小伙完成签到 ,获得积分10
2秒前
Wang发布了新的文献求助10
2秒前
哥哥完成签到,获得积分10
9秒前
loren313完成签到,获得积分0
11秒前
JamesPei应助一鸣大人采纳,获得10
13秒前
15秒前
烤鸭完成签到 ,获得积分10
21秒前
Niniiii发布了新的文献求助10
21秒前
back you up应助科研通管家采纳,获得30
26秒前
cdercder应助科研通管家采纳,获得10
26秒前
26秒前
威武的匕完成签到 ,获得积分10
28秒前
发嗲的慕蕊完成签到 ,获得积分10
29秒前
刘丰完成签到 ,获得积分10
30秒前
任伟超完成签到,获得积分10
35秒前
Niniiii完成签到,获得积分10
37秒前
Ding-Ding完成签到,获得积分10
40秒前
45秒前
马美丽完成签到 ,获得积分10
48秒前
不灭发布了新的文献求助10
50秒前
怡然的乘风完成签到 ,获得积分10
53秒前
正直的松鼠完成签到 ,获得积分10
1分钟前
long0809完成签到,获得积分10
1分钟前
缥缈的闭月完成签到,获得积分10
1分钟前
HC完成签到 ,获得积分10
1分钟前
稳重紫蓝完成签到 ,获得积分10
1分钟前
马香芦完成签到,获得积分10
1分钟前
自信松思完成签到 ,获得积分10
1分钟前
跳跃太清完成签到 ,获得积分10
1分钟前
木之尹完成签到 ,获得积分10
1分钟前
啵妞完成签到 ,获得积分10
1分钟前
幸福果汁完成签到 ,获得积分10
1分钟前
你好完成签到 ,获得积分10
1分钟前
cc完成签到,获得积分10
1分钟前
卓初露完成签到 ,获得积分10
1分钟前
zhilianghui0807完成签到 ,获得积分10
1分钟前
又又完成签到,获得积分10
1分钟前
652183758完成签到 ,获得积分10
1分钟前
holy完成签到 ,获得积分10
1分钟前
笨笨忘幽完成签到,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792550
求助须知:如何正确求助?哪些是违规求助? 3336787
关于积分的说明 10282126
捐赠科研通 3053566
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468