Interference-Robust Millimeter-Wave Radar-Based Dynamic Hand Gesture Recognition Using 2-D CNN-Transformer Networks

计算机科学 人工智能 极高频率 雷达成像 雷达 变压器 语音识别 模式识别(心理学) 电信 工程类 电压 电气工程
作者
Biao Jin,Xiao Ma,Zhenkai Zhang,Zhuxian Lian,Biao Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2741-2752 被引量:18
标识
DOI:10.1109/jiot.2023.3293092
摘要

Dynamic gesture recognition using millimeter-wave radar has a broad application prospect in the industrial Internet of Things (IoT) field. However, the existing methods in the random dynamic interference environment, such as throwing objects and waving and easily cause wrong recognition. This article proposes a dynamic gesture recognition method based on a convolutional neural network (CNN)-Transformer network to solve this problem. First, we reshape the original echoes acquired by the frequency-modulated continuous-wave (FMCW) millimeter-wave radar into 3-D data blocks in terms of Chirps $\times $ Samples $\times $ Frames. And we employ the mean elimination method to eliminate the static interference. Second, we extract dynamic gestures' distance and Doppler information with the 2-D fast Fourier transform and obtain the range-time map and Doppler-time maps. And we employ the coherent accumulation method to improve the signal-to-noise ratio (SNR). Third, we construct the CNN-Transformer network model for dynamic gesture recognition. The CNN is used to extract the local features of gestures, and multiple Transformer modules are stacked to extract deeper effective features. Finally, we build a data set for gesture recognition, including six kinds of dynamic gestures and two kinds of random interference. The experimental results show that the proposed method has a gesture recognition accuracy of more than 98% and 96% in the noninterference scene and the random dynamic interference scene, respectively, which are superior to the conventional recognition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mouxq发布了新的文献求助10
1秒前
1秒前
自由幻灵完成签到,获得积分10
2秒前
彭于晏应助yu采纳,获得10
3秒前
完美世界应助yyh采纳,获得50
4秒前
科研通AI5应助王小黑采纳,获得10
7秒前
自由幻灵发布了新的文献求助10
9秒前
drwang完成签到,获得积分10
10秒前
10秒前
朱广能完成签到,获得积分20
10秒前
袁衮衮完成签到,获得积分10
10秒前
11秒前
迷路灵波完成签到,获得积分20
12秒前
亦依然完成签到 ,获得积分10
12秒前
John完成签到,获得积分10
13秒前
14秒前
无辜洋葱发布了新的文献求助10
15秒前
lily完成签到,获得积分10
15秒前
15秒前
18秒前
DuesKing发布了新的文献求助10
19秒前
共享精神应助yu采纳,获得10
20秒前
tasaf完成签到,获得积分10
24秒前
ljh505完成签到,获得积分10
24秒前
科研通AI5应助活泼远山采纳,获得10
24秒前
25秒前
Hello应助放青松采纳,获得10
25秒前
的的发布了新的文献求助10
25秒前
科研通AI5应助小台农采纳,获得10
27秒前
思源应助明理傲儿采纳,获得10
28秒前
28秒前
Jasper应助sa采纳,获得10
30秒前
30秒前
dox发布了新的文献求助30
31秒前
31秒前
海猫食堂发布了新的文献求助10
32秒前
32秒前
herschelwu完成签到,获得积分10
33秒前
SYLH应助小宋采纳,获得30
33秒前
jarvision关注了科研通微信公众号
33秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
【求助文献,并非书籍】Perovskite solar cells 200
Anti-Politics Machine: Development, Depoliticization, and Bureaucratic Power in Lesotho James Ferguson 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837096
求助须知:如何正确求助?哪些是违规求助? 3379280
关于积分的说明 10508448
捐赠科研通 3099045
什么是DOI,文献DOI怎么找? 1706743
邀请新用户注册赠送积分活动 821226
科研通“疑难数据库(出版商)”最低求助积分说明 772487