Non-contrast CT radiomics and machine learning for outcomes prediction of patients with acute ischemic stroke receiving conventional treatment

医学 无线电技术 接收机工作特性 可解释性 改良兰金量表 人工智能 回顾性队列研究 机器学习 放射科 内科学 缺血性中风 计算机科学 缺血
作者
Limin Zhang,Jing Wu,Ruize Yu,Ruoyu Xu,Jiawen Yang,Qianrui Fan,Dawei Wang,Wei Zhang
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:165: 110959-110959 被引量:14
标识
DOI:10.1016/j.ejrad.2023.110959
摘要

Accurate prediction of outcomes for patients with acute ischemic stroke (AIS) is crucial for clinical decision-making. In this study, we developed prediction models based on non-contrast computed tomography (NCCT) radiomics and clinical features to predict the modified Rankin Scale (mRS) six months after hospital discharge.A two-center retrospective cohort of 240 AIS patients receiving conventional treatment was included. Radiomics features of the infarct area were extracted from baseline NCCT scans. We applied Kruskal-Wallis (KW) test and recursive feature elimination (RFE) to select features for developing clinical, radiomics, and fusion models (with clinical data and radiomics features), using support vector machine (SVM) algorithm. The prediction performance of the models was assessed by accuracy, sensitivity, specificity, F1 score, and receiver operating characteristic (ROC) curve. Shapley Additive exPlanations (SHAP) was applied to analyze the interpretability and predictor importance of the model.A total of 1454 texture features were extracted from the NCCT images. In the test cohort, the ROC analysis showed that the radiomics model and the fusion model showed AUCs of 0.705 and 0.857, which outperformed the clinical model (0.643), with the fusion model exhibiting the best performance. Additionally, the accuracy and sensitivity of the fusion model were also the best among the models (84.8% and 93.8%, respectively).The model based on NCCT radiomics and machine learning has high predictive efficiency for the prognosis of AIS patients receiving conventional treatment, which can be used to assist early personalized clinical therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助WTH采纳,获得10
1秒前
2984900855完成签到,获得积分10
2秒前
2秒前
funny完成签到,获得积分10
2秒前
乐乐应助科研牛人采纳,获得10
2秒前
bemay发布了新的文献求助10
3秒前
3秒前
王心桐发布了新的文献求助10
3秒前
4秒前
科目三应助atiqchemistry采纳,获得10
4秒前
4秒前
xiaoman发布了新的文献求助10
6秒前
8秒前
爱吃泡芙发布了新的文献求助10
8秒前
文子发布了新的文献求助10
8秒前
Willson3t发布了新的文献求助10
9秒前
10秒前
传奇3应助芒果采纳,获得10
10秒前
11秒前
12秒前
lwroche发布了新的文献求助10
13秒前
rabbitsang完成签到,获得积分10
14秒前
14秒前
wooooo完成签到,获得积分10
15秒前
16秒前
田様应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
16秒前
orixero应助科研通管家采纳,获得10
17秒前
17秒前
Steven发布了新的文献求助10
18秒前
19秒前
qqq完成签到,获得积分10
19秒前
冬菊完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Quantum reference frames : from quantum information to spacetime 888
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4387007
求助须知:如何正确求助?哪些是违规求助? 3879095
关于积分的说明 12083475
捐赠科研通 3522638
什么是DOI,文献DOI怎么找? 1933306
邀请新用户注册赠送积分活动 974231
科研通“疑难数据库(出版商)”最低求助积分说明 872405