Non-contrast CT radiomics and machine learning for outcomes prediction of patients with acute ischemic stroke receiving conventional treatment

医学 无线电技术 接收机工作特性 可解释性 改良兰金量表 人工智能 回顾性队列研究 机器学习 放射科 内科学 缺血性中风 计算机科学 缺血
作者
Limin Zhang,Jing Wu,Ruize Yu,Ruoyu Xu,Jiawen Yang,Qianrui Fan,Dawei Wang,Wei Zhang
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:165: 110959-110959 被引量:15
标识
DOI:10.1016/j.ejrad.2023.110959
摘要

Accurate prediction of outcomes for patients with acute ischemic stroke (AIS) is crucial for clinical decision-making. In this study, we developed prediction models based on non-contrast computed tomography (NCCT) radiomics and clinical features to predict the modified Rankin Scale (mRS) six months after hospital discharge.A two-center retrospective cohort of 240 AIS patients receiving conventional treatment was included. Radiomics features of the infarct area were extracted from baseline NCCT scans. We applied Kruskal-Wallis (KW) test and recursive feature elimination (RFE) to select features for developing clinical, radiomics, and fusion models (with clinical data and radiomics features), using support vector machine (SVM) algorithm. The prediction performance of the models was assessed by accuracy, sensitivity, specificity, F1 score, and receiver operating characteristic (ROC) curve. Shapley Additive exPlanations (SHAP) was applied to analyze the interpretability and predictor importance of the model.A total of 1454 texture features were extracted from the NCCT images. In the test cohort, the ROC analysis showed that the radiomics model and the fusion model showed AUCs of 0.705 and 0.857, which outperformed the clinical model (0.643), with the fusion model exhibiting the best performance. Additionally, the accuracy and sensitivity of the fusion model were also the best among the models (84.8% and 93.8%, respectively).The model based on NCCT radiomics and machine learning has high predictive efficiency for the prognosis of AIS patients receiving conventional treatment, which can be used to assist early personalized clinical therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼高山发布了新的文献求助20
刚刚
好蓝发布了新的文献求助10
刚刚
情怀应助受伤妙竹采纳,获得10
1秒前
2秒前
ccm应助pp采纳,获得20
4秒前
香蕉觅云应助懒羊羊采纳,获得10
4秒前
5秒前
5秒前
终梦应助拼搏大楚采纳,获得20
6秒前
8秒前
9秒前
英姑应助Noblesj采纳,获得10
10秒前
Treeone发布了新的文献求助20
10秒前
科目三应助yaya采纳,获得10
11秒前
12秒前
joana完成签到,获得积分10
13秒前
13秒前
思源应助zmz采纳,获得10
14秒前
15秒前
15秒前
充电宝应助1234采纳,获得10
17秒前
曾经问雁发布了新的文献求助10
17秒前
大胆香彤完成签到,获得积分10
18秒前
Jager.Z发布了新的文献求助10
18秒前
酷波er应助00采纳,获得10
18秒前
新手菜鸟发布了新的文献求助10
18秒前
zijin发布了新的文献求助10
19秒前
黎明的曙光完成签到,获得积分10
20秒前
SN完成签到 ,获得积分10
21秒前
迷人荷花发布了新的文献求助10
21秒前
懒羊羊发布了新的文献求助10
22秒前
24秒前
26秒前
大个应助老的火龙果采纳,获得10
27秒前
小马甲应助Shawn采纳,获得10
28秒前
28秒前
29秒前
30秒前
JamesPei应助欢呼高山采纳,获得10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263612
求助须知:如何正确求助?哪些是违规求助? 4424086
关于积分的说明 13771924
捐赠科研通 4299145
什么是DOI,文献DOI怎么找? 2358888
邀请新用户注册赠送积分活动 1355182
关于科研通互助平台的介绍 1316415