亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-View Clustering With Graph Learning for scRNA-Seq Data

聚类分析 计算机科学 图形 人工智能 聚类系数 机器学习 维数之咒 数据挖掘 理论计算机科学
作者
Wenming Wu,Wensheng Zhang,Weimin Hou,Xiaoke Ma
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (6): 3535-3546 被引量:9
标识
DOI:10.1109/tcbb.2023.3298334
摘要

Advances in single-cell biotechnologies have generated the single-cell RNA sequencing (scRNA-seq) of gene expression profiles at cell levels, providing an opportunity to study cellular distribution. Although significant efforts developed in their analysis, many problems remain in studying cell types distribution because of the heterogeneity, high dimensionality, and noise of scRNA-seq. In this study, a multi-view clustering with graph learning algorithm (MCGL) for scRNA-seq data is proposed, which consists of multi-view learning, graph learning, and cell type clustering. In order to avoid a single feature space of scRNA-seq being inadequate to comprehensively characterize the functions of cells, MCGL constructs the multiple feature spaces and utilizes multi-view learning to comprehensively characterize scRNA-seq data from different perspectives. MCGL adaptively learns the similarity graphs of cells that overcome the dependence on fixed similarity, transforming scRNA-seq analysis into the analysis of multi-view clustering. MCGL decomposes the networks of cells into view-specific and common networks in multi-view learning, which better characterizes the topological relationship of cells. MCGL simultaneously utilizes multiple types of cell-cell networks and fully exploits the connection relationship between cells through the complementarity between networks to improve clustering performance. The graph learning, graph factorization, and cell-type clustering processes are accomplished simultaneously under one optimization framework. The performance of the MCGL algorithm is validated with ten scRNA-seq datasets from different scales, and experimental results imply that the proposed algorithm significantly outperforms fourteen state-of-the-art scRNA-seq algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
彭于晏应助笑点低寻凝采纳,获得10
8秒前
希望天下0贩的0应助533采纳,获得10
21秒前
笑点低寻凝完成签到,获得积分20
25秒前
在水一方应助细心帽子采纳,获得10
32秒前
左丘如萱完成签到,获得积分10
40秒前
成就丸子完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
533发布了新的文献求助10
3分钟前
3分钟前
3分钟前
533完成签到,获得积分20
3分钟前
3分钟前
4分钟前
bkagyin应助雅诺德琳采纳,获得80
4分钟前
健康的大船完成签到 ,获得积分10
4分钟前
科研通AI5应助Skymi采纳,获得10
4分钟前
星辰大海应助nhh采纳,获得10
4分钟前
5分钟前
SIREN完成签到,获得积分10
5分钟前
aoba完成签到 ,获得积分10
5分钟前
6分钟前
玩命做研究完成签到 ,获得积分10
6分钟前
慕屹川完成签到 ,获得积分10
6分钟前
Skymi发布了新的文献求助10
6分钟前
Skymi完成签到,获得积分10
6分钟前
Krim完成签到 ,获得积分10
6分钟前
科研小白完成签到,获得积分10
6分钟前
慕屹川发布了新的文献求助10
7分钟前
cc完成签到 ,获得积分10
7分钟前
科研通AI5应助woods采纳,获得10
8分钟前
8分钟前
深情安青应助waresi采纳,获得10
8分钟前
woods发布了新的文献求助10
8分钟前
8分钟前
002完成签到,获得积分10
8分钟前
木头完成签到,获得积分10
8分钟前
waresi发布了新的文献求助10
8分钟前
001完成签到,获得积分10
8分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847676
求助须知:如何正确求助?哪些是违规求助? 3390385
关于积分的说明 10561493
捐赠科研通 3110732
什么是DOI,文献DOI怎么找? 1714498
邀请新用户注册赠送积分活动 825259
科研通“疑难数据库(出版商)”最低求助积分说明 775439