Let's Chat to Find the APIs: Connecting Human, LLM and Knowledge Graph through AI Chain

计算机科学 语义匹配 知识库 情报检索 杠杆(统计) 流利 图形 人工智能 自然语言处理 匹配(统计) 理论计算机科学 统计 数学 语言学 哲学
作者
Qing Huang,Zhenyu Wan,Zhenchang Xing,Changjing Wang,Jieshan Chen,Xiwei Xu,Qinghua Lu
标识
DOI:10.1109/ase56229.2023.00075
摘要

API recommendation methods have evolved from literal and semantic keyword matching to query expansion and query clarification. The latest query clarification method is knowledge graph (KG)-based, but limitations include out-of-vocabulary (OOV) failures and rigid question templates. To address these limitations, we propose a novel knowledge-guided query clarification approach for API recommendation that leverages a large language model (LLM) guided by KG. We utilize the LLM as a neural knowledge base to overcome OOV failures, generating fluent and appropriate clarification questions and options. We also leverage the structured API knowledge and entity relationships stored in the KG to filter out noise, and transfer the optimal clarification path from KG to the LLM, increasing the efficiency of the clarification process. Our approach is designed as an AI chain that consists of five steps, each handled by a separate LLM call, to improve accuracy, efficiency, and fluency for query clarification in API recommendation. We verify the usefulness of each unit in our AI chain, which all received high scores close to a perfect 5. When compared to the baselines, our approach shows a significant improvement in MRR, with a maximum increase of 63.9% higher when the query statement is covered in KG and 37.2% when it is not. Ablation experiments reveal that the guidance of knowledge in the KG and the knowledge-guided pathfinding strategy are crucial for our approach's performance, resulting in a 19.0% and 22.2% increase in MAP, respectively. Our approach demonstrates a way to bridge the gap between KG and LLM, effectively compensating for the strengths and weaknesses of both.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123123完成签到,获得积分10
2秒前
icel完成签到,获得积分10
2秒前
KUN发布了新的文献求助10
2秒前
兰兰完成签到,获得积分10
2秒前
Tingting完成签到 ,获得积分10
3秒前
3秒前
善学以致用应助霁星河采纳,获得10
3秒前
qiao完成签到,获得积分10
3秒前
星辰大海应助ayan采纳,获得10
4秒前
微纳组刘同完成签到,获得积分10
4秒前
番茄炒蛋完成签到,获得积分10
4秒前
4秒前
静静在学呢完成签到,获得积分10
4秒前
科研通AI5应助辞镜采纳,获得10
6秒前
FashionBoy应助荣枫采纳,获得10
8秒前
坦率书本完成签到,获得积分10
8秒前
Xiaoxiao应助Eason小川采纳,获得10
9秒前
Jasper应助流年采纳,获得10
9秒前
福尔摩曦发布了新的文献求助10
9秒前
pangpang完成签到,获得积分10
10秒前
罗沫沫发布了新的文献求助10
10秒前
sbw完成签到,获得积分10
10秒前
10秒前
逝月完成签到,获得积分10
11秒前
汉堡包应助马克董采纳,获得10
11秒前
杜小杜完成签到,获得积分10
11秒前
小小完成签到,获得积分10
11秒前
周欣完成签到 ,获得积分10
11秒前
12秒前
渭水飞熊完成签到,获得积分10
13秒前
彭于晏应助acedreams1采纳,获得10
13秒前
迷你的寒凝完成签到,获得积分20
13秒前
罗静完成签到,获得积分10
13秒前
王静姝完成签到,获得积分10
14秒前
chang完成签到,获得积分10
14秒前
烂漫的松完成签到,获得积分10
14秒前
hysmoment完成签到,获得积分10
15秒前
15秒前
务实凡灵完成签到,获得积分10
15秒前
望开心顺利毕业完成签到,获得积分10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Handbook of Medicinal Chemistry: Principles and Practice 200
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834076
求助须知:如何正确求助?哪些是违规求助? 3376485
关于积分的说明 10493557
捐赠科研通 3095982
什么是DOI,文献DOI怎么找? 1704818
邀请新用户注册赠送积分活动 820115
科研通“疑难数据库(出版商)”最低求助积分说明 771868