Evaluation of deep learning training strategies for the classification of bone marrow cell images

卷积神经网络 人工智能 计算机科学 骨髓 模式识别(心理学) 深度学习 召回 领域(数学分析) 医学 病理 机器学习 数学 数学分析 语言学 哲学
作者
Stefan Glüge,Stefan Balabanov,Viktor H. Koelzer,Thomas Ott
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:243: 107924-107924
标识
DOI:10.1016/j.cmpb.2023.107924
摘要

Background and Objective: The classification of bone marrow (BM) cells by light microscopy is an important cornerstone of hematological diagnosis, performed thousands of times a day by highly trained specialists in laboratories worldwide. As the manual evaluation of blood or BM smears is very time-consuming and prone to inter-observer variation, new reliable automated systems are needed. Methods: We aim to improve the automatic classification performance of hematological cell types. Therefore, we evaluate four state-of-the-art Convolutional Neural Network (CNN) architectures on a dataset of 171,374 microscopic cytological single-cell images obtained from BM smears from 945 patients diagnosed with a variety of hematological diseases. We further evaluate the effect of an in-domain vs. out-of-domain pre-training, and assess whether class activation maps provide human-interpretable explanations for the models' predictions. Results: The best performing pre-trained model (Regnet_y_32gf) yields a mean precision, recall, and F1 scores of 0.787±0.060, 0.755±0.061, and 0.762±0.050, respectively. This is a 53.5% improvement in precision and 7.3% improvement in recall over previous results with CNNs (ResNeXt-50) that were trained from scratch. The out-of-domain pre-training apparently yields general feature extractors/filters that apply very well to the BM cell classification use case. The class activation maps on cell types with characteristic morphological features were found to be consistent with the explanations of a human domain expert. For example, the Auer rods in the cytoplasm were the predictive cellular feature for correctly classified images of faggot cells. Conclusions: Our study provides data that can help hematology laboratories to choose the optimal training strategy for blood cell classification deep learning models to improve computer-assisted blood and bone marrow cell identification. It also highlights the need for more specific training data, i.e. images of difficult-to-classify classes, including cells labeled with disease information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助小丰采纳,获得10
刚刚
1秒前
2秒前
康康发布了新的文献求助10
3秒前
Denvir完成签到 ,获得积分10
5秒前
tdtk发布了新的文献求助10
7秒前
8秒前
学必困完成签到 ,获得积分10
8秒前
8秒前
啦啦鱼完成签到 ,获得积分10
9秒前
剪影改发布了新的文献求助10
12秒前
柳暗花明发布了新的文献求助10
13秒前
小丰完成签到,获得积分10
13秒前
kjding完成签到,获得积分10
13秒前
lwa完成签到,获得积分10
14秒前
研友_LjDyNZ发布了新的文献求助10
15秒前
16秒前
上官若男应助执着柏柳采纳,获得10
17秒前
辛坦夫发布了新的文献求助10
21秒前
HB完成签到,获得积分10
24秒前
FF完成签到 ,获得积分10
27秒前
宝玉完成签到 ,获得积分10
29秒前
mmmc大好发布了新的文献求助10
29秒前
Deng完成签到,获得积分10
32秒前
34秒前
36秒前
鸽子5359完成签到,获得积分10
36秒前
sheila发布了新的文献求助10
38秒前
小向1993完成签到 ,获得积分10
39秒前
赘婿应助跳跃隶采纳,获得10
39秒前
香蕉觅云应助科研通管家采纳,获得20
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
JamesPei应助科研通管家采纳,获得10
40秒前
Rye227应助科研通管家采纳,获得10
40秒前
40秒前
40秒前
汉堡包应助科研通管家采纳,获得10
40秒前
40秒前
40秒前
GH发布了新的文献求助10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782299
求助须知:如何正确求助?哪些是违规求助? 3327805
关于积分的说明 10233165
捐赠科研通 3042677
什么是DOI,文献DOI怎么找? 1670138
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758876