亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning Spectral-wise Correlation for Spectral Super-Resolution: Where Similarity Meets Particularity

高光谱成像 人工智能 光谱包络 计算机科学 模式识别(心理学) 光谱特征 光谱分辨率 特征(语言学) 光谱形状分析 相似性(几何) 数学 谱线 遥感 物理 语音识别 图像(数学) 地质学 哲学 语言学 天文
作者
Hongyuan Wang,Lizhi Wang,Chang Chen,Xue Hu,Fenglong Song,Hua Huang
标识
DOI:10.1145/3581783.3611760
摘要

Hyperspectral images consist of multiple spectral channels, and the task of spectral super-resolution is to reconstruct hyperspectral images from 3-channel RGB images, where modeling spectral-wise correlation is of great importance. Based on the analysis of the physical process of this task, we distinguish the spectral-wise correlation into two aspects: similarity and particularity. The Existing Transformer model cannot accurately capture spectral-wise similarity due to the inappropriate spectral-wise fully connected linear mapping acting on input spectral feature maps, which results in spectral feature maps mixing. Moreover, the token normalization operation in the existing Transformer model also results in its inability to capture spectral-wise particularity and thus fails to extract key spectral feature maps. To address these issues, we propose a novel Hybrid Spectral-wise Attention Transformer (HySAT). The key module of HySAT is Plausible Spectral-wise self-Attention (PSA), which can simultaneously model spectral-wise similarity and particularity. Specifically, we propose a Token Independent Mapping (TIM) mechanism to reasonably model spectral-wise similarity, where a linear mapping shared by spectral feature maps is applied on input spectral feature maps. Moreover, we propose a Spectral-wise Re-Calibration (SRC) mechanism to model spectral-wise particularity and effectively capture significant spectral feature maps. Experimental results show that our method achieves state-of-the-art performance in the field of spectral super-resolution with the lowest error and computational costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bc举报Gummybear求助涉嫌违规
22秒前
40秒前
Owen应助小人物采纳,获得20
41秒前
国色不染尘完成签到,获得积分10
57秒前
58秒前
饼干发布了新的文献求助10
1分钟前
饼干完成签到,获得积分20
1分钟前
1分钟前
传奇3应助LYL采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
彭于晏应助11采纳,获得10
2分钟前
2分钟前
11发布了新的文献求助10
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
老石完成签到 ,获得积分10
2分钟前
2分钟前
称心如意完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
LYL发布了新的文献求助10
3分钟前
桐桐应助11采纳,获得10
3分钟前
3分钟前
123完成签到,获得积分10
3分钟前
11发布了新的文献求助10
3分钟前
Denmark完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
Roentgenstrahlen完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
rerorero18发布了新的文献求助10
5分钟前
zyw完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788267
求助须知:如何正确求助?哪些是违规求助? 3333714
关于积分的说明 10263158
捐赠科研通 3049568
什么是DOI,文献DOI怎么找? 1673634
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760511