已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MBSI-Net: Multimodal Balanced Self-Learning Interaction Network for Image Classification

计算机科学 人工智能 网(多面体) 图像(数学) 上下文图像分类 模式识别(心理学) 数学 几何学
作者
Mengru Ma,Wenping Ma,Licheng Jiao,Xu Liu,Fang Liu,Lingling Li,Shuyuan Yang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 3819-3833 被引量:6
标识
DOI:10.1109/tcsvt.2023.3322470
摘要

A growing number of earth observation satellites are able to simultaneously gather multimodal images of the same area due to the expanding availability and resolution of satellite remote sensing data. This paper proposes a novel multimodal balanced self-learning interaction network (MBSI-Net) for the classification task. It involves a dual-branch teacher-student network that enables knowledge interaction and transfer between the multimodalities. Firstly, in order to introduce statistical information in addition to local and global structural information, a texture feature equalization module (TFE-Module) is proposed. This can enhance the texture information of features through histogram equalization and further improve the representation ability of features. Secondly, to enable the student network to provide timely feedback questions, the paper proposes a feature fusion module (F 2 -Module) that models and enhances teacher features through the student network. This helps to raise the classification's accuracy by incorporating information from multimodal images. Finally, the paper proposes a loss function based on structural similarity analysis to ensure balanced self-learning between the student and the teacher networks. Taking the multispectral (MS) and the panchromatic (PAN) images of the same scene as examples, through experimental verification, the proposed method can achieve good results on multiple datasets compared with other methods. Therefore, it offers an effective method for classifying and fusing multimodal data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6秒前
33完成签到,获得积分10
6秒前
Lighters发布了新的文献求助10
7秒前
乐乐应助清秀的吐司采纳,获得10
8秒前
喵喵发布了新的文献求助10
11秒前
冷眸完成签到,获得积分10
11秒前
上官若男应助Li采纳,获得10
12秒前
13秒前
13秒前
Arturo应助lwioi采纳,获得10
13秒前
yjs666完成签到,获得积分10
14秒前
li199624发布了新的文献求助10
16秒前
17秒前
神勇发布了新的文献求助10
18秒前
忐忑的黄豆完成签到,获得积分10
19秒前
21秒前
姜晓枫完成签到 ,获得积分10
23秒前
CodeCraft应助喵喵采纳,获得10
25秒前
25秒前
ansei完成签到,获得积分10
25秒前
27秒前
Simon发布了新的文献求助10
28秒前
斯文无敌完成签到,获得积分10
29秒前
wop111应助瘦瘦的白开水采纳,获得30
30秒前
31秒前
32秒前
33秒前
赘婿应助娇气的板凳采纳,获得30
34秒前
pcr163应助朴实的河马采纳,获得200
36秒前
37秒前
37秒前
秋风扫落叶完成签到,获得积分10
37秒前
英俊的铭应助kdf采纳,获得10
38秒前
Suraim完成签到,获得积分10
39秒前
冰棒比冰冰完成签到 ,获得积分10
39秒前
40秒前
FashionBoy应助nini采纳,获得10
40秒前
sunny发布了新的文献求助10
44秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4850864
求助须知:如何正确求助?哪些是违规求助? 4149880
关于积分的说明 12855861
捐赠科研通 3897534
什么是DOI,文献DOI怎么找? 2142184
邀请新用户注册赠送积分活动 1161848
关于科研通互助平台的介绍 1061745