Propagation Structure Fusion for Rumor Detection Based on Node-Level Contrastive Learning

计算机科学 谣言 节点(物理) 人工智能 判别式 图形 卷积神经网络 模式识别(心理学) 理论计算机科学 物理 公共关系 量子力学 政治学
作者
Jiachen Ma,Yong Liu,Meng Han,Chunqiang Hu,Zhaojie Ju
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:10
标识
DOI:10.1109/tnnls.2023.3319661
摘要

With the rise of social media, the rapid spread of rumors online has resulted in numerous negative effects on society and the economy. The methods for rumor detection have attracted great interest from both academia and industry. Given the widespread effectiveness of contrastive learning, many graph contrastive learning models for rumor detection have been proposed by using the event propagation structure as graph data. However, the existing contrastive models usually treat the propagation structure of other events similar to the anchor events as negative samples. While this design choice allows for discriminative learning, on the other hand, it also inevitably pushes apart semantically similar samples and, thus, degrades model performance. In this article, we propose a novel propagation fusion model called propagation structure fusion model based on node-level contrastive learning (PFNC) for rumor detection based on node-level contrastive learning. PFNC first obtains three augmented propagation structures by masking the text of each node in the propagation structure randomly and perturbing some edges in the propagation structure based on the importance of edges. Then, PFNC applies the node-level contrastive learning method between every two augmented propagation structures to prevent the samples with similar propagation structure from far away. Finally, a convolutional neural network (CNN)-based model is proposed to capture the relevant information that is consistent and supplementary among three augmented propagation structures by regarding the propagation structure of the event as a color picture, three augmented propagation structures as color channels, and each node as a pixel. The experimental results on real datasets show that the PFNC significantly outperforms the state-of-the-art models for rumor detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助失眠的丹翠采纳,获得10
刚刚
科研通AI6应助千秋竞岁采纳,获得10
1秒前
可靠绮琴完成签到,获得积分10
2秒前
yuanhao完成签到,获得积分10
2秒前
芝麻汤圆完成签到,获得积分10
6秒前
8秒前
zyw发布了新的文献求助30
9秒前
机智的雨竹完成签到,获得积分10
11秒前
12秒前
愉快雪晴发布了新的文献求助10
13秒前
www完成签到 ,获得积分10
14秒前
15秒前
科研通AI6应助lxl采纳,获得10
16秒前
只争朝夕完成签到,获得积分10
17秒前
李健应助善良凝芙采纳,获得10
17秒前
17秒前
21秒前
24秒前
Owen应助科研通管家采纳,获得10
25秒前
核桃应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
Rondab应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
乐乐应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
王开心应助科研通管家采纳,获得10
26秒前
领导范儿应助科研通管家采纳,获得10
26秒前
Rondab应助科研通管家采纳,获得10
26秒前
Rondab应助科研通管家采纳,获得10
26秒前
Orange应助科研通管家采纳,获得10
26秒前
情怀应助科研通管家采纳,获得10
26秒前
脑洞疼应助科研通管家采纳,获得10
26秒前
26秒前
田様应助虚拟的丹琴采纳,获得10
27秒前
细心大炮完成签到,获得积分10
29秒前
31秒前
32秒前
小马甲应助李lll采纳,获得10
34秒前
Louis发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4760329
求助须知:如何正确求助?哪些是违规求助? 4101273
关于积分的说明 12690381
捐赠科研通 3816584
什么是DOI,文献DOI怎么找? 2106874
邀请新用户注册赠送积分活动 1131495
关于科研通互助平台的介绍 1010217