Propagation Structure Fusion for Rumor Detection Based on Node-Level Contrastive Learning

计算机科学 谣言 节点(物理) 人工智能 判别式 图形 卷积神经网络 模式识别(心理学) 理论计算机科学 物理 公共关系 量子力学 政治学
作者
Jiachen Ma,Yong Liu,Meng Han,Chunqiang Hu,Zhaojie Ju
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:10
标识
DOI:10.1109/tnnls.2023.3319661
摘要

With the rise of social media, the rapid spread of rumors online has resulted in numerous negative effects on society and the economy. The methods for rumor detection have attracted great interest from both academia and industry. Given the widespread effectiveness of contrastive learning, many graph contrastive learning models for rumor detection have been proposed by using the event propagation structure as graph data. However, the existing contrastive models usually treat the propagation structure of other events similar to the anchor events as negative samples. While this design choice allows for discriminative learning, on the other hand, it also inevitably pushes apart semantically similar samples and, thus, degrades model performance. In this article, we propose a novel propagation fusion model called propagation structure fusion model based on node-level contrastive learning (PFNC) for rumor detection based on node-level contrastive learning. PFNC first obtains three augmented propagation structures by masking the text of each node in the propagation structure randomly and perturbing some edges in the propagation structure based on the importance of edges. Then, PFNC applies the node-level contrastive learning method between every two augmented propagation structures to prevent the samples with similar propagation structure from far away. Finally, a convolutional neural network (CNN)-based model is proposed to capture the relevant information that is consistent and supplementary among three augmented propagation structures by regarding the propagation structure of the event as a color picture, three augmented propagation structures as color channels, and each node as a pixel. The experimental results on real datasets show that the PFNC significantly outperforms the state-of-the-art models for rumor detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知性的初翠完成签到,获得积分10
1秒前
bkagyin应助K2L采纳,获得10
1秒前
今后应助858278343采纳,获得10
1秒前
英姑应助求助文献采纳,获得10
2秒前
NexusExplorer应助许树生采纳,获得10
3秒前
wying完成签到,获得积分10
3秒前
橱窗发布了新的文献求助30
3秒前
4秒前
caia完成签到,获得积分10
4秒前
卡皮巴拉完成签到,获得积分10
4秒前
4秒前
7秒前
7秒前
英姑应助大方汽车采纳,获得10
7秒前
7秒前
李健的小迷弟应助balabala采纳,获得10
8秒前
肚皮完成签到 ,获得积分0
8秒前
8秒前
WSGQT完成签到,获得积分10
10秒前
姚雅琪发布了新的文献求助10
11秒前
求助文献完成签到,获得积分10
12秒前
13秒前
刘jj完成签到,获得积分20
13秒前
柊苒完成签到 ,获得积分10
14秒前
拓跋涵易发布了新的文献求助10
14秒前
Orange完成签到,获得积分10
15秒前
路旁小白完成签到,获得积分10
17秒前
18秒前
ZX发布了新的文献求助10
18秒前
许树生发布了新的文献求助10
19秒前
19秒前
20秒前
kylin完成签到,获得积分10
20秒前
23秒前
23秒前
Ava应助拓跋涵易采纳,获得10
23秒前
Emily发布了新的文献求助10
23秒前
balabala发布了新的文献求助10
24秒前
充电宝应助drfang采纳,获得10
24秒前
和谐的甜瓜关注了科研通微信公众号
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321937
求助须知:如何正确求助?哪些是违规求助? 4463561
关于积分的说明 13890461
捐赠科研通 4354764
什么是DOI,文献DOI怎么找? 2392002
邀请新用户注册赠送积分活动 1385582
关于科研通互助平台的介绍 1355331