From Components to Converters: A Fundamental Topology Derivation Method for Nonresonant DC–DC Converters Based on Graph Theory

转换器 网络拓扑 拓扑(电路) 计算机科学 电感器 图形 工程类 电压 理论计算机科学 电气工程 操作系统
作者
Guipeng Chen,Liping Mo,Chaoqiang Jiang,Xinlin Qing
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (1): 1028-1045 被引量:5
标识
DOI:10.1109/tpel.2023.3323597
摘要

The past 20 years witnessed the invention of numerous converters by utilizing various topology derivation methods. Unfortunately, most of these methods are limited by pre-existing topologies or specific cells, causing the omission of some potentially valuable topologies. To break the limitations, a fundamental topology derivation method, namely components to converters (C2C), is proposed for nonresonant dc–dc converters. The basic idea of C2C is intuitively to derive topologies by combining separate components and filtering out valid combinations. Theoretically, C2C can derive converters more comprehensively since its results are not restricted by firm connections of the existing topologies or cells. However, C2C faces a heavy computing load caused by the massive combinations of components. Hence, a two-stage C2C topology derivation strategy is designed to alleviate the computing load. Furthermore, graph theory and dynamic programming are applied to computerize and optimize the above two-stage C2C. The two-stage C2C is utilized to derive single-switch two-port converters and single-inductor multiple-port converters. The derivation results show that all existing topologies with given components and numerous new topologies are derived automatically and simultaneously. Compared with the existing topology derivation methods, the proposed two-stage C2C is more thorough and automatic, facilitating more converters to meet various demands in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
guan发布了新的文献求助10
1秒前
wanci应助心晴采纳,获得10
1秒前
666关注了科研通微信公众号
2秒前
我是老大应助典雅闭月采纳,获得10
2秒前
大模型应助如意草丛采纳,获得10
2秒前
ding应助chentong采纳,获得10
3秒前
微笑的芝完成签到,获得积分10
3秒前
3秒前
3秒前
Yeong发布了新的文献求助10
3秒前
4秒前
情怀应助xuuuuu采纳,获得10
4秒前
云儿发布了新的文献求助10
4秒前
fsz完成签到,获得积分20
5秒前
Lucas应助舒适路人采纳,获得10
5秒前
奔跑西木发布了新的文献求助10
5秒前
6秒前
emm发布了新的文献求助10
7秒前
Yolen LI发布了新的文献求助10
7秒前
8秒前
科研助手6应助威武的匕采纳,获得10
8秒前
科研通AI5应助威武的匕采纳,获得10
8秒前
8秒前
MY999完成签到,获得积分10
8秒前
共享精神应助sctaaa采纳,获得10
8秒前
9秒前
Holden完成签到,获得积分10
9秒前
木有完成签到,获得积分10
9秒前
科研通AI5应助danielbbbb采纳,获得10
10秒前
10秒前
10秒前
一叶扁舟完成签到,获得积分10
10秒前
11秒前
gapsong完成签到,获得积分10
11秒前
zxy发布了新的文献求助10
12秒前
青原完成签到 ,获得积分10
13秒前
俯冲食堂完成签到,获得积分10
13秒前
如意草丛发布了新的文献求助10
14秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786700
求助须知:如何正确求助?哪些是违规求助? 3332381
关于积分的说明 10255367
捐赠科研通 3047723
什么是DOI,文献DOI怎么找? 1672668
邀请新用户注册赠送积分活动 801476
科研通“疑难数据库(出版商)”最低求助积分说明 760204