An artificial intelligence-based approach for selecting the optimal day for triggering in antagonist protocol cycles

敌手 协议(科学) 试验装置 男科 机器学习 计算机科学 医学 内科学 病理 受体 替代医学
作者
Shachar Reuvenny,Michal Youngster,Almog Luz,Rohi Hourvitz,Ettie Maman,Micha Baum,Ariel Hourvitz
出处
期刊:Reproductive Biomedicine Online [Elsevier BV]
卷期号:48 (1): 103423-103423 被引量:10
标识
DOI:10.1016/j.rbmo.2023.103423
摘要

Research question Can a machine-learning model suggest an optimal trigger day (or days), analysing three consecutive days, to maximize the number of total and mature (metaphase II [MII]) oocytes retrieved during an antagonist protocol cycle? Design This retrospective cohort study included 9622 antagonist cycles between 2018 and 2022. The dataset was divided into training, validation and test sets. An XGBoost machine-learning algorithm, based on the cycles’ data, suggested optimal trigger days for maximizing the number of MII oocytes retrieved by considering the MII predictions, prediction errors and outlier detection results. Evaluation of the algorithm was conducted using a test dataset including three quality groups: ‘Freeze-all oocytes’, ‘Fertilize-all’ and ‘ICSI-only’ cycles. The model suggested 1, 2 or 3 days as trigger options, depending on the difference in potential outcomes. The suggested days were compared with the actual trigger day chosen by the physician and were labelled ‘concordant' or ‘discordant’ in terms of agreement. Results In the ‘freeze-all' test-set, the concordant group showed an average increase of 4.8 oocytes and 3.4 MII oocytes. In the ‘ICSI-only’ test set there was an average increase of 3.8 MII oocytes and 1.1 embryos, and in the ‘fertilize-all’ test set an average increase of 3.6 oocytes and 0.9 embryos was observed (P < 0.001 for all parameters in all groups). Conclusions Utilizing a machine-learning model for determining the optimal trigger days may improve antagonist protocol cycle outcomes across all age groups in freeze-all or fresh transfer cycles. Implementation of these models may more accurately predict the number of oocytes retrieved, thus optimizing physicians’ decisions, balancing workloads and creating more standardized, yet patient-specific, protocols
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菲1208发布了新的文献求助10
1秒前
鼻揩了转去应助柠檬薄荷采纳,获得20
2秒前
詩翰完成签到,获得积分10
3秒前
cmxing完成签到,获得积分10
3秒前
hkxfg完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
sa完成签到,获得积分10
7秒前
Nico应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
tll应助科研通管家采纳,获得10
8秒前
tll应助科研通管家采纳,获得10
8秒前
wys发布了新的文献求助10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
tll应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
CAOHOU应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
tll应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
tll应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
好好学习完成签到,获得积分10
10秒前
10秒前
mmr完成签到 ,获得积分10
12秒前
成就的雨琴完成签到,获得积分10
12秒前
典雅夜安发布了新的文献求助10
12秒前
Ccx7469A发布了新的文献求助10
13秒前
在水一方应助liuzengzhang666采纳,获得10
13秒前
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4117141
求助须知:如何正确求助?哪些是违规求助? 3655693
关于积分的说明 11575681
捐赠科研通 3358706
什么是DOI,文献DOI怎么找? 1845166
邀请新用户注册赠送积分活动 910636
科研通“疑难数据库(出版商)”最低求助积分说明 827016