亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of an interpretable machine learning model for Ki-67 prediction in breast cancer using intratumoral and peritumoral ultrasound radiomics features

无线电技术 随机森林 支持向量机 逻辑回归 人工智能 医学 接收机工作特性 乳腺癌 机器学习 Ki-67 感兴趣区域 稳健性(进化) 计算机科学 癌症 模式识别(心理学) 免疫组织化学 病理 内科学 生物化学 化学 基因
作者
Jing Wang,Weiwei Gao,Min Lu,Xiaohua Yao,De-Bin Yang
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:13
标识
DOI:10.3389/fonc.2023.1290313
摘要

Traditional immunohistochemistry assessment of Ki-67 in breast cancer (BC) via core needle biopsy is invasive, inaccurate, and nonrepeatable. While machine learning (ML) provides a promising alternative, its effectiveness depends on extensive data. Although the current mainstream MRI-centered radiomics offers sufficient data, its unsuitability for repeated examinations, along with limited accessibility and an intratumoral focus, constrain the application of predictive models in evaluating Ki-67 levels.This study aims to explore ultrasound (US) image-based radiomics, incorporating both intra- and peritumoral features, to develop an interpretable ML model for predicting Ki-67 expression in BC patients.A retrospective analysis was conducted on 263 BC patients, divided into training and external validation cohorts. From intratumoral and peritumoral regions of interest (ROIs) in US images, 849 distinctive radiomics features per ROI were derived. These features underwent systematic selection to analyze Ki-67 expression relationships. Four ML models-logistic regression, random forests, support vector machine (SVM), and extreme gradient boosting-were formulated and internally validated to identify the optimal predictive model. External validation was executed to ascertain the robustness of the optimal model, followed by employing Shapley Additive Explanations (SHAP) to reveal the significant features of the model.Among 231 selected BC patients, 67.5% exhibited high Ki-67 expression, with consistency observed across both training and validation cohorts as well as other clinical characteristics. Of the 1698 radiomics features identified, 15 were significantly correlated with Ki-67 expression. The SVM model, utilizing combined ROI, demonstrated the highest accuracy [area under the receiver operating characteristic curve (AUROC): 0.88], making it the most suitable for predicting Ki-67 expression. External validation sustained an AUROC of 0.82, affirming the model's robustness above a 40% threshold. SHAP analysis identified five influential features from intra- and peritumoral ROIs, offering insight into individual prediction.This study emphasized the potential of SVM model using radiomics features from both intra- and peritumoral US images, for predicting elevated Ki-67 levels in BC patients. The model exhibited strong performance in validations, indicating its promise as a noninvasive tool to enable personalized decision-making in BC care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白菜完成签到,获得积分10
2秒前
26秒前
29秒前
李爱国应助科研通管家采纳,获得10
46秒前
江流有声完成签到 ,获得积分10
56秒前
斯文麦片完成签到 ,获得积分10
58秒前
1分钟前
结实初翠发布了新的文献求助10
1分钟前
完美世界应助帅123采纳,获得10
1分钟前
1分钟前
j1kxm完成签到,获得积分10
1分钟前
1分钟前
舒服的觅夏完成签到,获得积分10
1分钟前
冬去春来完成签到 ,获得积分10
1分钟前
帅123发布了新的文献求助10
1分钟前
1分钟前
KINGAZX完成签到 ,获得积分10
1分钟前
Orange应助Oven采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
Oven发布了新的文献求助10
2分钟前
充电宝应助结实初翠采纳,获得10
2分钟前
2分钟前
Oven完成签到,获得积分10
2分钟前
3分钟前
结实初翠发布了新的文献求助10
3分钟前
慕青应助结实初翠采纳,获得10
3分钟前
月儿完成签到 ,获得积分10
3分钟前
bc举报Colin求助涉嫌违规
3分钟前
乐乐应助褚曼安采纳,获得10
3分钟前
www完成签到 ,获得积分10
3分钟前
4分钟前
沐风完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
乾坤侠客LW完成签到,获得积分10
5分钟前
5分钟前
5分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798503
求助须知:如何正确求助?哪些是违规求助? 3343966
关于积分的说明 10318223
捐赠科研通 3060565
什么是DOI,文献DOI怎么找? 1679670
邀请新用户注册赠送积分活动 806731
科研通“疑难数据库(出版商)”最低求助积分说明 763323