计算机科学
编码
特征学习
人工智能
提取器
代表(政治)
特征(语言学)
网(多面体)
模式识别(心理学)
匹配(统计)
骨架(计算机编程)
机器学习
数学
生物化学
基因
哲学
化学
政治学
程序设计语言
工艺工程
法学
工程类
几何学
统计
语言学
政治
作者
Cong Wu,Xiao‐Jun Wu,Josef Kittler,Tianyang Xu,Sara Atito,Muhammad Awais,Zhenhua Feng
出处
期刊:Cornell University - arXiv
日期:2023-09-11
被引量:1
标识
DOI:10.48550/arxiv.2309.05834
摘要
Contrastive learning has achieved great success in skeleton-based action recognition. However, most existing approaches encode the skeleton sequences as entangled spatiotemporal representations and confine the contrasts to the same level of representation. Instead, this paper introduces a novel contrastive learning framework, namely Spatiotemporal Clues Disentanglement Network (SCD-Net). Specifically, we integrate the decoupling module with a feature extractor to derive explicit clues from spatial and temporal domains respectively. As for the training of SCD-Net, with a constructed global anchor, we encourage the interaction between the anchor and extracted clues. Further, we propose a new masking strategy with structural constraints to strengthen the contextual associations, leveraging the latest development from masked image modelling into the proposed SCD-Net. We conduct extensive evaluations on the NTU-RGB+D (60&120) and PKU-MMD (I&II) datasets, covering various downstream tasks such as action recognition, action retrieval, transfer learning, and semi-supervised learning. The experimental results demonstrate the effectiveness of our method, which outperforms the existing state-of-the-art (SOTA) approaches significantly.
科研通智能强力驱动
Strongly Powered by AbleSci AI