蛋白质基因组学
可解释性
预测能力
蛋白质组学
转录组
人工智能
癌症
概化理论
生物
计算机科学
计算生物学
机器学习
病理
生物信息学
医学
内科学
基因
心理学
发展心理学
基因表达
哲学
认识论
生物化学
作者
Joshua M. Wang,Runyu Hong,Elizabeth G. Demicco,Jimin Tan,Rossana Lazcano,André L. Moreira,Yize Li,Anna Calinawan,Narges Razavian,Tobias Schraink,Michael A. Gillette,Gilbert S. Omenn,Eunkyung An,Henry Rodriguez,Aristotelis Tsirigos,Kelly V. Ruggles,Li Ding,Ana I. Robles,D.R. Mani,Karin Rodland
标识
DOI:10.1016/j.xcrm.2023.101173
摘要
We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755 H&E-stained histopathological slides from 657 patients across 6 cancer types from CPTAC. Our models effectively recapitulate distinctions readily made by human pathologists: tumor vs. normal (AUROC = 0.995) and tissue-of-origin (AUROC = 0.979). We further investigate predictive power on tasks not normally performed from H&E alone, including TP53 prediction and pathologic stage. Importantly, we describe predictive morphologies not previously utilized in a clinical setting. The incorporation of transcriptomics and proteomics identifies pathway-level signatures and cellular processes driving predictive histology features. Model generalizability and interpretability is confirmed using TCGA. We propose a classification system for these tasks, and suggest potential clinical applications for this integrated human and machine learning approach. A publicly available web-based platform implements these models.
科研通智能强力驱动
Strongly Powered by AbleSci AI