DFA-Net: Multi-Scale Dense Feature-Aware Network via Integrated Attention for Unmanned Aerial Vehicle Infrared and Visible Image Fusion

人工智能 计算机科学 特征(语言学) 红外线的 计算机视觉 图像融合 模式识别(心理学) 夜视 自编码 遥感 人工神经网络 图像(数学) 光学 物理 地质学 哲学 语言学
作者
Sen Shen,Di Li,Liye Mei,Chuan Xu,Zhaoyi Ye,Qi Zhang,Bo Hong,Wei Yang,Ying Wang
出处
期刊:Drones [Multidisciplinary Digital Publishing Institute]
卷期号:7 (8): 517-517 被引量:3
标识
DOI:10.3390/drones7080517
摘要

Fusing infrared and visible images taken by an unmanned aerial vehicle (UAV) is a challenging task, since infrared images distinguish the target from the background by the difference in infrared radiation, while the low resolution also produces a less pronounced effect. Conversely, the visible light spectrum has a high spatial resolution and rich texture; however, it is easily affected by harsh weather conditions like low light. Therefore, the fusion of infrared and visible light has the potential to provide complementary advantages. In this paper, we propose a multi-scale dense feature-aware network via integrated attention for infrared and visible image fusion, namely DFA-Net. Firstly, we construct a dual-channel encoder to extract the deep features of infrared and visible images. Secondly, we adopt a nested decoder to adequately integrate the features of various scales of the encoder so as to realize the multi-scale feature representation of visible image detail texture and infrared image salient target. Then, we present a feature-aware network via integrated attention to further fuse the feature information of different scales, which can focus on specific advantage features of infrared and visible images. Finally, we use unsupervised gradient estimation and intensity loss to learn significant fusion features of infrared and visible images. In addition, our proposed DFA-Net approach addresses the challenges of fusing infrared and visible images captured by a UAV. The results show that DFA-Net achieved excellent image fusion performance in nine quantitative evaluation indexes under a low-light environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刘完成签到,获得积分10
1秒前
沉静的迎荷完成签到,获得积分10
1秒前
mrjohn完成签到,获得积分10
2秒前
2秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
852应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
3秒前
hjyylab应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
RuiBigHead发布了新的文献求助10
4秒前
5秒前
852应助丰富的以筠采纳,获得10
6秒前
7秒前
7秒前
啦啦啦完成签到,获得积分10
8秒前
Miyo完成签到,获得积分10
8秒前
烂漫的衬衫完成签到,获得积分10
9秒前
9秒前
十二发布了新的文献求助10
10秒前
爆米花应助Ting采纳,获得10
10秒前
多看文献发布了新的文献求助10
11秒前
科研通AI5应助Selena采纳,获得10
11秒前
11秒前
冰千蕙发布了新的文献求助10
11秒前
abjz完成签到,获得积分10
12秒前
哭泣的幼蓉完成签到 ,获得积分10
12秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843639
求助须知:如何正确求助?哪些是违规求助? 3385923
关于积分的说明 10542998
捐赠科研通 3106709
什么是DOI,文献DOI怎么找? 1711095
邀请新用户注册赠送积分活动 823920
科研通“疑难数据库(出版商)”最低求助积分说明 774383