已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing Lamb wave-based damage diagnosis in composite materials using a pseudo-damage boosted convolutional neural network approach

兰姆波 卷积神经网络 计算机科学 过程(计算) 模式识别(心理学) 人工神经网络 特征(语言学) 人工智能 灵敏度(控制系统) 声学 材料科学 电子工程 工程类 表面波 物理 哲学 操作系统 电信 语言学
作者
Álvaro González-Jiménez,Luca Lomazzi,Rafael Junges,Marco Giglio,Andrea Manes,Francesco Cadini
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (3): 1514-1529 被引量:10
标识
DOI:10.1177/14759217231189972
摘要

Damage diagnosis of thin-walled structures has been successfully performed through methods based on tomography and machine learning-driven methods. According to traditional approaches, diagnostic signals are excited and sensed on the structure through a permanently installed network of sensors and are processed to obtain information about the damage. Good performance characterizes methods that process Lamb waves, which are described by long propagation distances and high sensitivity to anomalies. Most of the methods require extracting damage-sensitive features from the diagnostic signals to drive the damage diagnosis task. However, this process can lead to loss of information, and the choice of the specific feature to extract may introduce biases that hamper damage diagnosis. Furthermore, traditional approaches do not perform well when composites are considered, due to the anisotropy, inhomogeneity, and complex damage mechanisms shown by this type of material. To boost the performance of methods for damage diagnosis of composite plates, this work proposes a convolutional neural network (CNN)-based algorithm that localizes damage by processing Lamb waves. Different from other methods, the proposed method does not require extracting features from the acquired signals and allows localizing damage through the regression approach. The method was tested against experimental observations of Lamb waves propagating in two composite panels and in a hybrid panel, and the performance of two different sensor arrays was investigated. The pseudo-damage approach was used to generate large enough datasets for training the CNNs, and the performance of the framework was evaluated by localizing pseudo-damage and real damage determined by low-velocity impacts. The CNN-driven method accurately localized damage in all the considered scenarios, and it also outperformed traditional damage indices-based approaches, such as the reconstruction algorithm for probabilistic inspection of defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聂白晴发布了新的文献求助10
1秒前
叁拾肆完成签到,获得积分10
3秒前
4秒前
gogogo发布了新的文献求助10
5秒前
6秒前
研友_VZG7GZ应助云想萧潇采纳,获得10
7秒前
orixero应助壶十二采纳,获得10
9秒前
9秒前
12秒前
张包子完成签到 ,获得积分10
14秒前
tjzbw完成签到,获得积分10
14秒前
一只东北鸟完成签到 ,获得积分10
17秒前
老阎应助yunyunyu采纳,获得30
18秒前
20秒前
21秒前
few发布了新的文献求助10
25秒前
25秒前
littic发布了新的文献求助30
25秒前
金色天际线完成签到,获得积分10
26秒前
26秒前
27秒前
27秒前
Akim应助烟沙采纳,获得10
31秒前
feiCheung发布了新的文献求助10
31秒前
朱子涵发布了新的文献求助10
31秒前
32秒前
zzzhhh发布了新的文献求助10
32秒前
枕边人完成签到 ,获得积分10
32秒前
SUE发布了新的文献求助10
33秒前
34秒前
浔初先生完成签到,获得积分10
36秒前
靓丽冬灵应助zhang采纳,获得10
37秒前
Adian发布了新的文献求助10
37秒前
夏意发布了新的文献求助10
37秒前
LIN发布了新的文献求助10
38秒前
38秒前
小马甲应助xo00z采纳,获得100
38秒前
38秒前
allshestar完成签到 ,获得积分10
39秒前
zzzhhh完成签到,获得积分10
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3924094
求助须知:如何正确求助?哪些是违规求助? 3468884
关于积分的说明 10954107
捐赠科研通 3198243
什么是DOI,文献DOI怎么找? 1766978
邀请新用户注册赠送积分活动 856635
科研通“疑难数据库(出版商)”最低求助积分说明 795541