已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Uncovering microbial food webs using machine learning

生物 有壳变形虫 生态学 生态系统 营养水平 食物网 微生物生态学 特质 生物多样性 丰度(生态学) 机器学习 人工智能 计算机科学 泥炭 遗传学 细菌 程序设计语言
作者
Janna M. Barel,Owen L. Petchey,Abir Ghaffouli,Vincent E. J. Jassey
出处
期刊:Soil Biology & Biochemistry [Elsevier]
卷期号:186: 109174-109174 被引量:6
标识
DOI:10.1016/j.soilbio.2023.109174
摘要

Microbial trophic interactions are an important aspect of microbiomes in any ecosystem. They can reveal how microbial diversity modulates ecosystem functioning. However, uncovering microbial feeding interactions is a challenge because direct observation of predation is difficult with classical approaches such as behaviour and gut contents analyses. To overcome this issue, recent developments in trait-matching and machine-learning approaches are promising for successfully inferring microbial feeding links. Here, we tested the ability of six machine-learning algorithms for predicting microbial feeding links, based on species traits and taxonomy. By incorporating organism speed, size and abundance into the model predictions, we further estimated the probability of feeding links occurring. We found that the model trained with the boosted regression trees algorithm predicted feeding links between microbes best. Sensitivity analyses showed that feeding link predictions were robust against faulty predictors in the training set, and capable of predicting feeding links for empirical datasets containing up to 50% of new taxa. We cross-validated the feeding link predictions using an empirical dataset from a Sphagnum-dominated peatland with direct feeding observations for two dominant testate amoeba predators. The feeding habits of the two testate amoeba species were comparable between microscopic observations and model predictions. Machine learning thus offers a means to develop robust models for studying microbial food webs. It offers a route to combine traditional observations with DNA-based sampling strategies to upscale soil biodiversity research along ecological gradients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然的水蓝完成签到 ,获得积分10
刚刚
SSSSCCCCIIII完成签到,获得积分10
3秒前
852应助最爱炸里脊采纳,获得10
3秒前
oxs完成签到 ,获得积分10
4秒前
英俊的铭应助调皮火龙果采纳,获得10
4秒前
鲸落完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
7秒前
优秀不愁发布了新的文献求助10
10秒前
点点发布了新的文献求助10
11秒前
yuanlinhex发布了新的文献求助50
12秒前
科研通AI6应助zli采纳,获得10
12秒前
13秒前
苏颜玉完成签到,获得积分10
13秒前
Iris发布了新的文献求助10
14秒前
15秒前
16秒前
向上的小v完成签到 ,获得积分10
17秒前
天天快乐应助Iris采纳,获得10
18秒前
zyz发布了新的文献求助10
19秒前
19秒前
lynn221204完成签到,获得积分10
19秒前
21秒前
21秒前
yuyuyu发布了新的文献求助10
22秒前
舒服的蚂蚁完成签到,获得积分10
23秒前
24秒前
点点完成签到 ,获得积分10
25秒前
26秒前
迷人的跳跳糖完成签到 ,获得积分10
27秒前
28秒前
29秒前
香菜头完成签到 ,获得积分10
29秒前
最爱炸里脊完成签到,获得积分10
30秒前
cheche完成签到,获得积分10
31秒前
32秒前
32秒前
大个应助任性的皮皮虾采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554475
求助须知:如何正确求助?哪些是违规求助? 4639080
关于积分的说明 14655090
捐赠科研通 4580870
什么是DOI,文献DOI怎么找? 2512482
邀请新用户注册赠送积分活动 1487276
关于科研通互助平台的介绍 1458165