Adaptive Domain-Adversarial Few-Shot Learning for Cross-Domain Hyperspectral Image Classification

计算机科学 人工智能 模式识别(心理学) 条件概率分布 领域(数学分析) 协方差 高光谱成像 特征(语言学) 对抗制 相似性(几何) 图像(数学) 特征提取 机器学习 数学 统计 哲学 数学分析 语言学
作者
Zhen Ye,Jie Wang,Huan Liu,Yu Zhang,Wei Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:10
标识
DOI:10.1109/tgrs.2023.3334289
摘要

The process of annotating hyperspectral image (HSI) data is characterized by its time-consuming and labor-intensive nature. To address this challenge, researchers often employ a meta-learning paradigm known as few-shot learning (FSL), which leverages source domains containing a substantial number of labeled samples to assist in the classification of target domains with limited labeled samples. Many existing FSL methods rely on a conditional domain-adversarial strategy to mitigate the domain shift between source and target domains. However, these methods overlook the fact that the degrees of conditional distribution discrepancies between the two domains can vary significantly across different classes, leading to suboptimal conditional distribution alignment. To address this problem, we propose a framework called Adaptive Domain-Adversarial Few-Shot Learning (ADAFSL). Overall, the proposed ADAFSL employs an adaptive strategy that assigns varying weights to the conditional adversarial losses for different classes based on their respective degrees of discrepancies, thereby achieving global conditional distribution alignment. Specifically, a local alignment score map is constructed by measuring the similarity between labeled and unlabeled samples using both Euclidean and class-covariance metrics. This map is then multiplied with the conditional adversarial loss map, thus allocating more emphasis to the classes exhibiting greater discrepancies between the two domains. Moreover, to enhance cross-domain FSL, we design a multi-scale spectral-spatial feature extraction (MSFE) module, which incorporates cascaded multi-scale dilated convolutions. Experimental results on four public HSI datasets demonstrate that the proposed ADAFSL outperforms other state-of-the-art methods. The source code of this method can be found at https://github.com/JieW-ww/ADAFSL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Artemis完成签到,获得积分10
刚刚
LLL完成签到,获得积分10
1秒前
byy发布了新的文献求助10
1秒前
1秒前
高兴可乐完成签到,获得积分20
2秒前
Yi羿完成签到 ,获得积分10
2秒前
暖暖完成签到,获得积分10
2秒前
3秒前
HEIKU举报称心易文求助涉嫌违规
3秒前
shuang0116举报SSK求助涉嫌违规
3秒前
科研通AI2S应助yuisl采纳,获得10
3秒前
chen发布了新的文献求助20
4秒前
刘志斌完成签到,获得积分10
5秒前
秃瓢完成签到,获得积分10
5秒前
小超人完成签到,获得积分10
5秒前
6秒前
大橘爱水晶完成签到,获得积分10
6秒前
123完成签到 ,获得积分10
6秒前
小酒很努力吖完成签到 ,获得积分10
6秒前
生动芝麻完成签到,获得积分10
6秒前
uuyyee完成签到,获得积分10
7秒前
潇洒的妙芙完成签到,获得积分10
8秒前
zhao完成签到 ,获得积分10
8秒前
8秒前
核小蟀完成签到,获得积分20
8秒前
搜集达人应助俏皮的芝麻采纳,获得10
9秒前
卓隶完成签到,获得积分10
9秒前
章紫完成签到 ,获得积分10
9秒前
9秒前
卷心菜完成签到,获得积分10
11秒前
ti完成签到,获得积分10
11秒前
xiaoyu完成签到,获得积分10
11秒前
13秒前
13秒前
默默百招发布了新的文献求助10
14秒前
自由大叔发布了新的文献求助10
14秒前
1111完成签到 ,获得积分10
14秒前
是毛果芸香碱完成签到,获得积分10
15秒前
15秒前
耍酷寻双完成签到 ,获得积分10
15秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804483
求助须知:如何正确求助?哪些是违规求助? 3349364
关于积分的说明 10343885
捐赠科研通 3065418
什么是DOI,文献DOI怎么找? 1683064
邀请新用户注册赠送积分活动 808697
科研通“疑难数据库(出版商)”最低求助积分说明 764675