HRST-LR: A Hessian Regularization Spatio-Temporal Low Rank Algorithm for Traffic Data Imputation

黑森矩阵 正规化(语言学) 计算机科学 算法 人工智能 数据挖掘 数学 缺少数据 应用数学 机器学习
作者
Xiuqin Xu,Ming‐Wei Lin,Xin Luo,Zeshui Xu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (10): 11001-11017 被引量:69
标识
DOI:10.1109/tits.2023.3279321
摘要

Intelligent Transportation Systems (ITSs) are vital for alleviating traffic congestion and improving traffic efficiency. Due to the delay of network transmission and failure of detectors, massive missing traffic data are often produced in ITSs, which evidently decreases the accuracy of decision-making in road traffic management. Hence, how establishing a precise and efficient estimation of missing traffic data becomes a hot yet thorny issue. Low-rank matrix completion (LR-MC) model has proven to be highly effective to address this issue owing to its fine representativeness of such high-dimensional and incomplete data. However, the existing LR-MC models mostly fail to model the inherently temporal and spatial correlations hidden in traffic network structure, resulting in low estimation accuracy. To improve it, this paper proposes a Hessian regularization spatio-temporal low rank (HRST-LR) algorithm with three main-fold ideas: a) imposing low-rank property into the global features of a traffic matrix for precisely learning its structure, b) capturing the temporal evolvement via a second-order difference of time-series constraint, and c) modeling the similar space of road segments through a Hessian regularization spatial constraint, thus exploring the local correlation between road segments for representing the spatial patterns in the traffic data. Experimental results on four traffic data sets prove that HRST-LR outperforms several state-of-the-art methods in the missing traffic data estimation with the root mean squared error improvements often higher than 14% when the missing rate is 90%. Hence, the HRST-LR algorithm is highly valuable for traffic data imputation with the need of performing spatio-temporal low-rank analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助Sea_U采纳,获得10
刚刚
慕青应助洁净思枫采纳,获得10
刚刚
雪白溪流完成签到 ,获得积分10
刚刚
May完成签到 ,获得积分10
刚刚
wh完成签到,获得积分10
1秒前
1秒前
王灿灿完成签到,获得积分10
1秒前
1秒前
暖冬22完成签到,获得积分10
2秒前
2秒前
朱颖完成签到,获得积分10
2秒前
英俊的铭应助ppp采纳,获得10
2秒前
2秒前
彭于晏应助Hommand_藏山采纳,获得10
3秒前
123完成签到,获得积分10
4秒前
5秒前
5秒前
BSFXZ发布了新的文献求助10
5秒前
zh完成签到,获得积分20
6秒前
skskysky发布了新的文献求助10
6秒前
Lucas应助淡然柚子采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
酷炫的元蝶完成签到,获得积分10
7秒前
欣慰问柳完成签到,获得积分10
7秒前
詹密完成签到,获得积分10
8秒前
sss发布了新的文献求助10
8秒前
8秒前
8秒前
浮游应助莫道雪落奈何采纳,获得10
9秒前
9秒前
9秒前
美好幻灵完成签到,获得积分20
10秒前
张艳茹发布了新的文献求助20
10秒前
倪铭发布了新的文献求助10
10秒前
wanci应助俏皮麦片采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559435
求助须知:如何正确求助?哪些是违规求助? 3985900
关于积分的说明 12340835
捐赠科研通 3656514
什么是DOI,文献DOI怎么找? 2014495
邀请新用户注册赠送积分活动 1049235
科研通“疑难数据库(出版商)”最低求助积分说明 937558