Combining GA-SVM and NSGA-Ⅲ multi-objective optimization to reduce the emission and fuel consumption of high-pressure common-rail diesel engine

制动比油耗 支持向量机 柴油 柴油机 燃料效率 汽车工程 遗传算法 多目标优化 废气再循环 氮氧化物 计算机科学 工程类 人工智能 机器学习 燃烧 内燃机 有机化学 化学
作者
Yuhua Wang,Guiyong Wang,Guozhong Yao,Qianqiao Shen,Xuan Yu,Shuchao He
出处
期刊:Energy [Elsevier]
卷期号:278: 127965-127965 被引量:31
标识
DOI:10.1016/j.energy.2023.127965
摘要

This research proposed a multi-objective optimization approach that combines Non-dominated Sorting Genetic Algorithms (NSGA) Ⅲ and support vector machine (SVM) to reduce diesel engine emissions while enhancing economic performance and calibration efficiency. In order to obtain accurate experimental data on diesel engines, a space-filling design method was proposed based on the prediction modeling of diesel engine performance. The SVM prediction model for diesel engine performance was established. A genetic algorithm (GA) was introduced to optimize the SVM model's penalty factor and radial basis parameters, thereby improving its prediction accuracy. The multi-objective optimization approach optimized the braking specific fuel consumption (BSFC), NOx, and CO. The results show that: the GA-SVM diesel engine performance prediction model has excellent prediction performance and generalization ability for BSFC, NOx, and CO, with R2 values of 0.981, 0.979, and 0.968, respectively. GA-SVM was used to evaluate the fitness of the NSGA-III optimal set. This not only ensures optimization accuracy but also improves working efficiency. After optimization, the BSFC of the diesel engine was reduced by 1.67%, NOx emission was reduced by 27.01%, CO emission was reduced by 19.15%, and noticeable optimization results were obtained. This work has important reference value for the automatic calibration of diesel engine control parameters, improving the economy and emission of diesel engines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博弈春秋发布了新的文献求助10
刚刚
隐形曼青应助极品男大采纳,获得10
刚刚
刚刚
刚刚
小菜鸟加油加油完成签到,获得积分10
刚刚
YBHTLLLL发布了新的文献求助10
1秒前
1秒前
1秒前
田様应助柳絮旭采纳,获得10
1秒前
1秒前
裴复完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
研友_VZG7GZ应助阔达宝莹采纳,获得10
2秒前
拉呀完成签到,获得积分10
3秒前
3秒前
Chream关注了科研通微信公众号
3秒前
3秒前
十月发布了新的文献求助10
4秒前
林鱼丸发布了新的文献求助10
4秒前
MizzZeus发布了新的文献求助10
4秒前
5秒前
5秒前
leicaixia发布了新的文献求助30
6秒前
爱吃西瓜的大猴子完成签到,获得积分10
6秒前
科研通AI6应助biyeshunli采纳,获得10
7秒前
xu发布了新的文献求助10
7秒前
博弈春秋完成签到,获得积分10
7秒前
慕青应助智慧莎采纳,获得10
8秒前
One应助Yuanyuan采纳,获得10
9秒前
xiuuu完成签到,获得积分10
9秒前
9秒前
ding应助聪明的幻枫采纳,获得10
9秒前
xxxx发布了新的文献求助10
10秒前
可爱的函函应助追光采纳,获得10
10秒前
10秒前
kk君发布了新的文献求助10
10秒前
11秒前
Starry发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525810
求助须知:如何正确求助?哪些是违规求助? 4615949
关于积分的说明 14550994
捐赠科研通 4554057
什么是DOI,文献DOI怎么找? 2495680
邀请新用户注册赠送积分活动 1476168
关于科研通互助平台的介绍 1447839