A survey of machine learning and deep learning in remote sensing of geological environment: Challenges, advances, and opportunities

背景(考古学) 计算机科学 口译(哲学) 地质调查 数据科学 人工智能 系统工程 遥感 工程类 地质学 地球物理学 古生物学 程序设计语言
作者
Wei Han,Xiaohan Zhang,Yi Wang,Lizhe Wang,Xiaohui Huang,Jun Li,Sheng Wang,Weitao Chen,Xianju Li,Ruyi Feng,Runyu Fan,Xinyu Zhang,Yuewei Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 87-113 被引量:79
标识
DOI:10.1016/j.isprsjprs.2023.05.032
摘要

Due to limited resources and environmental pollution, monitoring the geological environment has become essential for many countries’ sustainable development. As various high-resolution remote-sensing (RS) imaging platforms are continuously available, the remote sensing of the geological environment (GERS) provides a fine-grain, all-weather, and low-cost method for identifying geological elements. Mainstream machine learning (ML) and deep learning (DL) methods can extract high-level high-dimensional semantic information and thus supply an efficient tool for high-precision classification and recognition in many fields. Therefore, the integration of advanced methods and multi-source RS images for GERS interpretation has achieved remarkable breakthroughs during the past decades. However, to the best of our knowledge, a systematic survey of the advances of GERS interpretation regarding ML and DL methods is still lacking. Through the collection of extensive published research in this area, this survey outlines and analyzes the challenges, progress, and promising directions of GERS interpretation. Specifically, the main challenges and difficulties in identifying GERS elements are first summarized in four aspects: sufficient element characteristics and variations, complex context disturbance, RS image quality and types, and other limitations in GERS interpretation. Second, we systematically introduce various RS imaging platforms and advanced ML and DL methods for GERS interpretation. Third, the research status and trends of several GERS applications, including their use for lithology, soil, water, rock glacier, and geological disaster, are ultimately collected and compared. Finally, potential opportunities for future research are discussed. After the systematic and comprehensive review, the conclusive findings suggest that longtime large-scale GERS interpretation and corresponding change pattern analysis will be a significant future direction to meet the needs of environment improvement and sustainable development. To complete the above goals, a fusion of satellite, airplane, environmental monitoring, geological survey, and other types of data will provide enough discriminative information, and expert knowledge, GIS, and high-performance computing techniques will be helpful to improve the efficiency and generalizability of ML and DL methods for processing the multi-platform RS data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
YORLAN发布了新的文献求助10
2秒前
略略略发布了新的文献求助10
3秒前
3秒前
拉拉发布了新的文献求助200
3秒前
扶余山本发布了新的文献求助10
3秒前
4秒前
威武鸽子发布了新的文献求助10
4秒前
5秒前
平淡的天宇完成签到,获得积分10
5秒前
TheYu完成签到,获得积分10
6秒前
歌尔德蒙关注了科研通微信公众号
6秒前
6秒前
7秒前
马喽发布了新的文献求助10
7秒前
7秒前
1212发布了新的文献求助10
8秒前
abaqus发布了新的文献求助10
8秒前
8秒前
tunacan完成签到 ,获得积分10
10秒前
云上人发布了新的文献求助10
10秒前
脑洞疼应助lolly采纳,获得10
10秒前
长系青发布了新的文献求助10
11秒前
蓝色的纪念完成签到,获得积分10
11秒前
豆豆发布了新的文献求助10
11秒前
帅气的怼怼完成签到,获得积分10
11秒前
hour完成签到 ,获得积分10
12秒前
Jasper应助11111111111采纳,获得10
12秒前
搜集达人应助EgbertW采纳,获得80
14秒前
hhan发布了新的文献求助10
15秒前
下X下完成签到,获得积分10
15秒前
曰草发布了新的文献求助10
15秒前
若晴完成签到,获得积分10
16秒前
17秒前
LBB完成签到,获得积分10
18秒前
执着夏岚完成签到,获得积分10
18秒前
下X下发布了新的文献求助10
18秒前
长系青完成签到,获得积分10
19秒前
小马甲应助shiny采纳,获得10
19秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842525
求助须知:如何正确求助?哪些是违规求助? 3384644
关于积分的说明 10536237
捐赠科研通 3105132
什么是DOI,文献DOI怎么找? 1710053
邀请新用户注册赠送积分活动 823486
科研通“疑难数据库(出版商)”最低求助积分说明 774091