Structural and optical properties of Fe@C doped TiO2 thin films prepared by sol–gel method

材料科学 锐钛矿 带隙 薄膜 兴奋剂 X射线光电子能谱 吸收边 光催化 化学工程 纳米技术 分析化学(期刊) 光电子学 化学 工程类 催化作用 生物化学 色谱法
作者
Jin Chen,Lu Liu,Lu Zheng,Min Liu,Yuyu Gao,Kun Zhao
出处
期刊:Inorganic Chemistry Communications [Elsevier BV]
卷期号:153: 110776-110776 被引量:9
标识
DOI:10.1016/j.inoche.2023.110776
摘要

TiO2 is a widely used semiconductor photocatalyst, but its poor absorption of visible light and wide band gap (3.2 eV) limit its sunlight absorption efficiency. TiO2 is commonly modified through doping to reduce its forbidden band gap width and improve its sunlight absorption efficiency. Currently, researchers mainly modify TiO2 with metals or nonmetals, but no one has explored the use of nanoparticles with a magnetic nonmetal carbon layer coated with metal to study the optical properties of TiO2. In this study, we aim to modify the optical properties of TiO2 by incorporating the unique carbon shell nanoparticle structure into TiO2. Therefore, in this paper, magnetic carbon-coated iron ([email protected]) nanoparticles were firstly prepared. Then, using tetrabutyl titanate as the raw material, anhydrous ethanol as the solvent, and diethanolamine as the inhibitor, TiO2 sol doped with [email protected] nanoparticles was prepared. [email protected] doped TiO2 (TiO2[email protected]) thin films were prepared on the Fluorine Tin Oxide substrate at an annealing temperature of 500 °C, and the effects of different [email protected] contents on the surface structure and optical properties of the samples were investigated. The differences between undoped anatase TiO2 films and [email protected] doped TiO2 films were analyzed using various techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, ultraviolet–visible spectroscopy, and field-emission scanning electron microscopy. The band gap width after doping was 2.48 eV, substantially lower than that of TiO2 films doped with a single metal Fe in literature (3.02 eV). This lower band gap width makes it an attractive option for use in the field of photoelectric conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲板栗完成签到,获得积分10
1秒前
ekm7k完成签到,获得积分10
1秒前
lz完成签到,获得积分10
1秒前
1秒前
悦耳怜珊完成签到,获得积分10
2秒前
祖问筠完成签到,获得积分10
2秒前
窝窝头发布了新的文献求助10
2秒前
冷傲迎梦发布了新的文献求助10
3秒前
健壮的尔烟完成签到,获得积分10
5秒前
Iris完成签到,获得积分10
5秒前
5秒前
todaay完成签到,获得积分10
6秒前
童绿柳完成签到,获得积分10
7秒前
batmanrobin完成签到,获得积分10
7秒前
地球发布了新的文献求助10
8秒前
今后应助stuuuuuuuuuuudy采纳,获得10
8秒前
myy完成签到,获得积分10
8秒前
伶俐一曲完成签到,获得积分10
8秒前
cxm完成签到,获得积分10
8秒前
9秒前
麦凯发布了新的文献求助10
9秒前
冰激凌完成签到,获得积分10
11秒前
贪玩的网络完成签到 ,获得积分10
12秒前
13秒前
广州南完成签到 ,获得积分10
13秒前
上官若男应助iuhgnor采纳,获得10
13秒前
todaay发布了新的文献求助10
13秒前
13秒前
曹中明完成签到,获得积分10
13秒前
echoxq完成签到,获得积分10
14秒前
琴楼完成签到,获得积分10
14秒前
傻瓜完成签到 ,获得积分10
14秒前
遇上就这样吧应助科研GO采纳,获得10
14秒前
fuxiao完成签到 ,获得积分10
15秒前
离岸完成签到,获得积分10
15秒前
Potato完成签到,获得积分10
16秒前
月亮上的猫完成签到,获得积分10
17秒前
zyyyyyy完成签到,获得积分10
18秒前
小手冰凉完成签到 ,获得积分10
18秒前
18秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
A Student's Guide to Maxwell's Equations 200
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827474
求助须知:如何正确求助?哪些是违规求助? 3369741
关于积分的说明 10457440
捐赠科研通 3089439
什么是DOI,文献DOI怎么找? 1699861
邀请新用户注册赠送积分活动 817560
科研通“疑难数据库(出版商)”最低求助积分说明 770263